Boundary regularity of flows under perfect slip boundary conditions
Petr Kaplický ; Jakub Tichý
Open Mathematics, Tome 11 (2013), p. 1243-1263 / Harvested from The Polish Digital Mathematics Library

We investigate boundary regularity of solutions of generalized Stokes equations. The problem is complemented with perfect slip boundary conditions and we assume that the nonlinear elliptic operator satisfies non-standard ϕ-growth conditions. We show the existence of second derivatives of velocity and their optimal regularity.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269751
@article{bwmeta1.element.doi-10_2478_s11533-013-0232-x,
     author = {Petr Kaplick\'y and Jakub Tich\'y},
     title = {Boundary regularity of flows under perfect slip boundary conditions},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1243-1263},
     zbl = {1278.35040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0232-x}
}
Petr Kaplický; Jakub Tichý. Boundary regularity of flows under perfect slip boundary conditions. Open Mathematics, Tome 11 (2013) pp. 1243-1263. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0232-x/

[1] Amrouche C., Girault V., Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J., 1994, 44(119)(1), 109–140 | Zbl 0823.35140

[2] Beirão da Veiga H., On the regularity of flows with Ladyzhenskaya shear-dependent viscosity and slip or nonslip boundary conditions, Comm. Pure Appl. Math., 2005, 58(4), 552–577 http://dx.doi.org/10.1002/cpa.20036[Crossref] | Zbl 1075.35045

[3] Beirão da Veiga H., Navier-Stokes equations with shear-thickening viscosity. Regularity up to the boundary, J. Math. Fluid Mech., 2009, 11(2), 233–257 http://dx.doi.org/10.1007/s00021-008-0257-2[Crossref][WoS] | Zbl 1213.76047

[4] Beirão da Veiga H., Navier-Stokes equations with shear-thinning viscosity. Regularity up to the boundary, J. Math. Fluid Mech., 2009, 11(2), 258–273 http://dx.doi.org/10.1007/s00021-008-0258-1[Crossref][WoS] | Zbl 1190.35174

[5] Beirão da Veiga H., On the Ladyzhenskaya-Smagorinsky turbulence model of the Navier-Stokes equations in smooth domains. The regularity problem, J. Eur. Math. Soc. (JEMS), 2009, 11(1), 127–167 http://dx.doi.org/10.4171/JEMS/144[Crossref]

[6] Beirão da Veiga H., Kaplický P., Růžička M., Boundary regularity of shear thickening flows, J. Math. Fluid Mech., 2011, 13(3), 387–404 http://dx.doi.org/10.1007/s00021-010-0025-y[Crossref] | Zbl 1270.35360

[7] Desvillettes L., Villani C., On a variant of Korn’s inequality arising in statistical mechanics, ESIAM Control Optim. Calc. Var., 2002, 8, 603–619 http://dx.doi.org/10.1051/cocv:2002036[Crossref] | Zbl 1092.82032

[8] Diening L., Ettwein F., Fractional estimates for non-differentiable elliptic systems with general growth, Forum Math., 2008, 20(3), 523–556 http://dx.doi.org/10.1515/FORUM.2008.027[WoS][Crossref] | Zbl 1188.35069

[9] Diening L., Kaplický P., L q theory for a generalized Stokes system, Manuscripta Math. (in press), DOI: 10.1007/s00229-012-0574-x [Crossref][WoS] | Zbl 1263.35175

[10] Diening L., Růžička M., Interpolation operators in Orlicz-Sobolev spaces, Numer. Math., 2007, 107(1), 107–129 http://dx.doi.org/10.1007/s00211-007-0079-9[Crossref][WoS] | Zbl 1131.46023

[11] Diening L., Růžička M., Schumacher K., A decomposition technique for John domains, Ann. Acad. Sci. Fenn. Math., 2010, 35(1), 87–114 http://dx.doi.org/10.5186/aasfm.2010.3506[Crossref]

[12] Ebmeyer C., Regularity in Sobolev spaces of steady flows of fluids with shear-dependent viscosity, Math. Methods Appl. Sci., 2006, 29(14), 1687–1707 http://dx.doi.org/10.1002/mma.748[Crossref] | Zbl 1124.35053

[13] Frehse J., Málek J., Steinhauer M., An existence result for fluids with shear dependent viscosity - steady flows, Nonlinear Anal., 1997, 30(5), 3041–3049 http://dx.doi.org/10.1016/S0362-546X(97)00392-1[Crossref] | Zbl 0902.35089

[14] Frehse J., Málek J., Steinhauer M., On existence result for fluids with shear dependent viscosity - unsteady flows, In: Partial Differential Equations, Praha, August 10–16, 1998, Chapman & Hall/CRC Res. Notes Math., 406, Chapman & Hall/CRC, Boca Raton, 2000, 121–129 | Zbl 0935.35026

[15] Galdi G.P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations. I, Springer Tracts Nat. Philos., 38, Springer, New York, 1994 | Zbl 0949.35004

[16] Hlaváček I., Nečas J., On inequalities of Korn’s type, Arch. Rational Mech. Anal., 1970, 36(4), 305–311 http://dx.doi.org/10.1007/BF00249518[Crossref] | Zbl 0193.39001

[17] Hlaváček I., Nečas J., On inequalities of Korn’s type II, Arch. Rational Mech. Anal., 1970, 36(4), 312–334 http://dx.doi.org/10.1007/BF00249519[Crossref] | Zbl 0193.39002

[18] Kaplický P., Regularity of flows of a non-Newtonian fluid subject to Dirichlet boundary conditions, Z. Anal. Anwendungen, 2005, 24(3), 467–486 http://dx.doi.org/10.4171/ZAA/1251[Crossref] | Zbl 1094.35100

[19] Kaplický P., Regularity of flow of anisotropic fluid, J. Math. Fluid Mech., 2008, 10(1), 71–88 http://dx.doi.org/10.1007/s00021-006-0217-7[Crossref] | Zbl 1162.76304

[20] Kaplický P., Málek J., Stará J., On global existence of smooth two-dimensional steady flows for a class of non-Newtonian fluids under various boundary conditions, In: Applied Nonlinear Analysis, New York, Kluwer/Plenum, 1999, 213–229 | Zbl 0953.35120

[21] Kaplický P., Málek J., Stará J., C 1,α-solutions to a class of nonlinear fluids in two dimensions - stationary Dirichlet problem, J. Math. Sci. (New York), 2002, 109(5), 1867–1893 http://dx.doi.org/10.1023/A:1014440207817[Crossref]

[22] Kaplický P., Málek J., Stará J., Global-in-time Hölder continuity of the velocity gradients for fluids with shear-dependent viscosities, NoDEA Nonlinear Differential Equations Appl., 2002, 9(2), 175–195 http://dx.doi.org/10.1007/s00030-002-8123-z[Crossref] | Zbl 0991.35066

[23] Krasnosel’skiĭ M.A., Rutickiĭ Ja.B., Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961

[24] Ladyzhenskaya O.A., New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems, Proc. Steklov Inst. Math., 1967, 102, 95–118

[25] Málek J., Nečas J., Rokyta M., Růžička M., Weak and Measure-Valued Solutions to Evolutionary PDEs, Appl. Math. Math. Comput., 13, Chapman & Hall, London, 1996 | Zbl 0851.35002

[26] Málek J., Nečas J., Růžička M., On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case p ≥ 2, Adv. Differential Equations, 2001, 6(3), 257–302 | Zbl 1021.35085

[27] Málek J., Pražák D., Steinhauer M., On the existence and regularity of solutions for degenerate power-law fluids, Differential Integral Equations, 2006, 19(4), 449–462 | Zbl 1200.76020

[28] Peetre J., A new approach in interpolation spaces, Studia Math., 1970, 34, 23–42 | Zbl 0188.43602

[29] Rao M.M., Ren Z.D., Theory of Orlicz Spaces, Monogr. Textbooks Pure Appl. Math., 146, Marcel Dekker, New York, 1991 | Zbl 0724.46032

[30] Troianiello G.M., Elliptic Differential Equations and Obstacle Problems, Univ. Ser. Math., Plenum Press, New York, 1987 | Zbl 0655.35002

[31] Wolf J., Interior C 1,α-regularity of weak solutions to the equations of stationary motions of certain non-Newtonian fluids in two dimensions, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 2007, 10(2), 317–340