Solvability of a mathematical model of dissociative adsorption and associative desorption type
Algirdas Ambrazevičius ; Alicija Eismontaitė
Open Mathematics, Tome 11 (2013), p. 1129-1139 / Harvested from The Polish Digital Mathematics Library

A mathematical model of dissociative adsorption and associative desorption for diatomic molecules is generalized. The model is described by a coupled system of parabolic and ordinary differential equations. The existence and uniqueness theorem of the classical solution is proved.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269657
@article{bwmeta1.element.doi-10_2478_s11533-013-0223-y,
     author = {Algirdas Ambrazevi\v cius and Alicija Eismontait\.e},
     title = {Solvability of a mathematical model of dissociative adsorption and associative desorption type},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1129-1139},
     zbl = {1270.35247},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0223-y}
}
Algirdas Ambrazevičius; Alicija Eismontaitė. Solvability of a mathematical model of dissociative adsorption and associative desorption type. Open Mathematics, Tome 11 (2013) pp. 1129-1139. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0223-y/

[1] Ambrazevičius A., Solvability of a coupled system of parabolic and ordinary differential equations, Cent. Eur. J. Math., 2010, 8(3), 537–547 http://dx.doi.org/10.2478/s11533-010-0028-1[Crossref] | Zbl 1201.35107

[2] Ambrazevičius A., Existence and uniqueness theorem to a unimolecular heterogeneous catalytic reaction model, Nonlinear Anal. Model. Control, 2010, 15(4), 405–421 | Zbl 06599352

[3] Friedman A., Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, 1964 | Zbl 0144.34903

[4] Kankare J., Vinokurov I.A., Kinetics of Langmuirian adsorption onto planar, spherical, and cylindrical surfaces, Langmuir, 1999, 15(17), 5591–5599 http://dx.doi.org/10.1021/la981642r[Crossref]

[5] Ladyženskaja O.A., Solonnikov V.A., Ural’ceva N.N., Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr., 23, American Mathematical Society, Providence, 1968

[6] Langmuir I., The adsorption of gases on plane surfaces of glass, mica and platinum, Journal of the American Chemical Society, 1918, 40(9), 1361–1403 http://dx.doi.org/10.1021/ja02242a004[Crossref]

[7] Lieberman M.A., The Langmuir isotherm and the standard model of ion-assisted etching, Plasma Sources Science and Technology, 2009, 18(1), #014002 http://dx.doi.org/10.1088/0963-0252/18/1/014002[Crossref]

[8] Pao C.V., Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992

[9] Skakauskas V., Katauskis P., Numerical solving of coupled systems of parabolic and ordinary differential equations, Nonlinear Anal. Model. Control, 2010, 15(3), 351–360 | Zbl 1227.35024

[10] Skakauskas V., Katauskis P., Numerical study of the kinetics of unimolecular heterogeneous reactions onto planar surfaces, J. Math. Chem., 2012, 50(1), 141–154 http://dx.doi.org/10.1007/s10910-011-9901-9[Crossref][WoS] | Zbl 1238.92079