A subgroup H of a group G is said to permute with a subgroup K of G if HK is a subgroup of G. H is said to be permutable (resp. S-permutable) if it permutes with all the subgroups (resp. Sylow subgroups) of G. Finite groups in which permutability (resp. S-permutability) is a transitive relation are called PT-groups (resp. PST-groups). PT-, PST- and T-groups, or groups in which normality is transitive, have been extensively studied and characterised. Kaplan [Kaplan G., On T-groups, supersolvable groups, and maximal subgroups, Arch. Math. (Basel), 2011, 96(1), 19–25] presented some new characterisations of soluble T-groups. The main goal of this paper is to establish PT- and PST-versions of Kaplan’s results, which enables a better understanding of the relationships between these classes.
@article{bwmeta1.element.doi-10_2478_s11533-013-0222-z, author = {Adolfo Ballester-Bolinches and James Beidleman and Ram\'on Esteban-Romero and Vicent P\'erez-Calabuig}, title = {Maximal subgroups and PST-groups}, journal = {Open Mathematics}, volume = {11}, year = {2013}, pages = {1078-1082}, zbl = {1283.20016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0222-z} }
Adolfo Ballester-Bolinches; James Beidleman; Ramón Esteban-Romero; Vicent Pérez-Calabuig. Maximal subgroups and PST-groups. Open Mathematics, Tome 11 (2013) pp. 1078-1082. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0222-z/
[1] Ballester-Bolinches A., Esteban-Romero R., Asaad M., Products of Finite Groups, de Gruyter Exp. Math., 53, Walter de Gruyter, Berlin, 2010 http://dx.doi.org/10.1515/9783110220612[Crossref] | Zbl 1206.20019
[2] Ballester-Bolinches A., Ezquerro L.M., Classes of Finite Groups, Math. Appl. (Springer), 584, Springer, Dordrecht, 2006 | Zbl 1102.20016
[3] Doerk K., Hawkes T., Finite Soluble Groups, de Gruyter Exp. Math., 4, Walter de Gruyter, Berlin, 1992 http://dx.doi.org/10.1515/9783110870138[Crossref] | Zbl 0753.20001
[4] Gaschütz W., Über die Ø-Untergruppe endlicher Gruppen, Math. Z., 1953, 58, 160–170 http://dx.doi.org/10.1007/BF01174137[Crossref] | Zbl 0050.02202
[5] Huppert B., Endliche Gruppen I, Grundlehren Math. Wiss., 134, Springer, Berlin, Berlin-New York, 1967 http://dx.doi.org/10.1007/978-3-642-64981-3[Crossref]
[6] Kaplan G., On T-groups, supersolvable groups, and maximal subgroups, Arch. Math. (Basel), 2011, 96(1), 19–25 http://dx.doi.org/10.1007/s00013-010-0207-0[WoS][Crossref] | Zbl 1230.20020