Isometries of some F-algebras of holomorphic functions on the upper half plane
Yasuo Iida ; Kei Takahashi
Open Mathematics, Tome 11 (2013), p. 1034-1038 / Harvested from The Polish Digital Mathematics Library

Linear isometries of N p(D) onto N p(D) are described, where N p(D), p > 1, is the set of all holomorphic functions f on the upper half plane D = {z ∈ ℂ: Im z > 0} such that supy>0 ∫ℝ lnp (1 + |(x + iy)|) dx < +∞. Our result is an improvement of the results by D.A. Efimov.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:268978
@article{bwmeta1.element.doi-10_2478_s11533-013-0221-0,
     author = {Yasuo Iida and Kei Takahashi},
     title = {Isometries of some F-algebras of holomorphic functions on the upper half plane},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1034-1038},
     zbl = {1269.30059},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0221-0}
}
Yasuo Iida; Kei Takahashi. Isometries of some F-algebras of holomorphic functions on the upper half plane. Open Mathematics, Tome 11 (2013) pp. 1034-1038. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0221-0/

[1] Efimov D.A., F-algebras of holomorphic functions in a half-plane defined by maximal functions, Dokl. Math., 2007, 76(2), 755–757 http://dx.doi.org/10.1134/S1064562407050298[Crossref] | Zbl 1156.30037

[2] Eoff C.M., A representation of N α+ as a union of weighted Hardy spaces, Complex Variables Theory Appl., 1993, 23(3–4), 189–199 http://dx.doi.org/10.1080/17476939308814684[Crossref]

[3] Forelli F., The isometries of H p, Canad. J. Math., 1964, 16, 721–728 http://dx.doi.org/10.4153/CJM-1964-068-3[Crossref] | Zbl 0132.09403

[4] Iida Y., On an F-algebra of holomorphic functions on the upper half plane, Hokkaido Math. J., 2006, 35(3), 487–495 | Zbl 1127.30018

[5] Iida Y., Mochizuki N., Isometries of some F-algebras of holomorphic functions, Arch. Math. (Basel), 1998, 71(4), 297–300 http://dx.doi.org/10.1007/s000130050267[Crossref] | Zbl 0912.30030

[6] Mochizuki N., Nevanlinna and Smirnov classes on the upper half plane, Hokkaido Math. J., 1991, 20(3), 609–620 | Zbl 0760.30016

[7] Stein E.M., Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Math. Ser., 32, Princeton University Press, Princeton, 1971 | Zbl 0232.42007

[8] Stephenson K., Isometries of the Nevanlinna class, Indiana Univ. Math. J., 1977, 26(2), 307–324 http://dx.doi.org/10.1512/iumj.1977.26.26023[Crossref] | Zbl 0326.30025

[9] Stoll M., Mean growth and Taylor coefficients of some topological algebras of analytic functions, Ann. Polon. Math., 1977/78, 35(2), 139–158 | Zbl 0377.30036