We show global existence for a class of models of fluids that change their properties depending on the concentration of a chemical. We allow that the stress tensor in (t, x) depends on the velocity and concentration at other points and times. The example we have in mind foremost are materials with memory.
@article{bwmeta1.element.doi-10_2478_s11533-013-0220-1, author = {Tom\'a\v s B\'arta}, title = {Global existence for a system of nonlocal PDEs with applications to chemically reacting incompressible fluids}, journal = {Open Mathematics}, volume = {11}, year = {2013}, pages = {1112-1128}, zbl = {1285.35076}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0220-1} }
Tomáš Bárta. Global existence for a system of nonlocal PDEs with applications to chemically reacting incompressible fluids. Open Mathematics, Tome 11 (2013) pp. 1112-1128. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0220-1/
[1] Adams R.A., Fournier J.J.F., Sobolev Spaces, 2nd ed., Pure Appl. Math. (Amst.), 140, Elsevier, Amsterdam, 2003
[2] Bulíček M., Málek J., Rajagopal K.R., Mathematical analysis of unsteady flows of fluids with pressure, shear-rate, and temperature dependent material moduli that slip at solid boundaries, SIAM J. Math. Anal., 2009, 41(2), 665–707 http://dx.doi.org/10.1137/07069540X[Crossref][WoS] | Zbl 1195.35239
[3] Bulíček M., Málek J., Rajagopal K.R., Mathematical results concerning unsteady flows of chemically reacting incompressible fluids, In: Partial Differential Equations and Fluid Mechanics, London Math. Soc. Lecture Note Ser., 364, Cambridge University Press, Cambridge, 2009, 26–53 http://dx.doi.org/10.1017/CBO9781139107112.003[Crossref]
[4] Gajewski H., Gröger K., Zacharias K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Math. Lehrbucher und Monogr., 38, Akademie, Berlin, 1974 | Zbl 0289.47029
[5] Gripenberg G., Londen S.-O., Staffans O., Volterra Integral and Functional Equations, Encyclopedia Math. Appl., 34, Cambridge University Press, Cambridge, 1990 http://dx.doi.org/10.1017/CBO9780511662805[Crossref] | Zbl 0695.45002
[6] Málek J., Nečas J., Rokyta M., Růžička M., Weak and Measure-Valued Solutions to Evolutionary PDE, Appl. Math. Math. Comput., 13, Chapman & Hall, London, 1996 | Zbl 0851.35002
[7] Prüss J., Evolutionary Integral Equations and Applications, Monogr. Math., 87, Birkhäuser, Basel, 1993 http://dx.doi.org/10.1007/978-3-0348-8570-6[Crossref] | Zbl 0784.45006
[8] Rajagopal K.R., Wineman A.S., Applications of viscoelastic clock models in biomechanics, Acta Mech., 2010, 213(3–4), 255–266 http://dx.doi.org/10.1007/s00707-009-0262-4[Crossref][WoS] | Zbl 05795169
[9] Renardy M., Hrusa W.J., Nohel J.A., Mathematical Problems in Viscoelasticity, Pitman Monogr. Surveys Pure Appl. Math., 35, Longman Scientific & Technical, Harlow; John Wiley & Sons, New York, 1987 | Zbl 0719.73013
[10] Simon J., Compact sets in the space Lp(0; T;B), Ann. Mat. Pura Appl., 1987, 146, 65–96 http://dx.doi.org/10.1007/BF01762360 | Zbl 0629.46031
[11] Vorotnikov D.A., Zvyagin V.G., On the convergence of solutions of a regularized problem for the equations of motion of a Jeffery viscoelastic medium to the solutions of the original problem, J. Math. Sci. (N.Y.), 2007, 144(5), 4398–4408 http://dx.doi.org/10.1007/s10958-007-0277-0[Crossref] | Zbl 1160.74012
[12] Zvyagin V.G., Dmitrienko V.T., On weak solutions of a regularized model of a viscoelastic fluid, Differ. Equ., 2002, 38(12), 1731–1744 http://dx.doi.org/10.1023/A:1023860129831[Crossref] | Zbl 1070.35048