Global existence for a system of nonlocal PDEs with applications to chemically reacting incompressible fluids
Tomáš Bárta
Open Mathematics, Tome 11 (2013), p. 1112-1128 / Harvested from The Polish Digital Mathematics Library

We show global existence for a class of models of fluids that change their properties depending on the concentration of a chemical. We allow that the stress tensor in (t, x) depends on the velocity and concentration at other points and times. The example we have in mind foremost are materials with memory.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269553
@article{bwmeta1.element.doi-10_2478_s11533-013-0220-1,
     author = {Tom\'a\v s B\'arta},
     title = {Global existence for a system of nonlocal PDEs with applications to chemically reacting incompressible fluids},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1112-1128},
     zbl = {1285.35076},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0220-1}
}
Tomáš Bárta. Global existence for a system of nonlocal PDEs with applications to chemically reacting incompressible fluids. Open Mathematics, Tome 11 (2013) pp. 1112-1128. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0220-1/

[1] Adams R.A., Fournier J.J.F., Sobolev Spaces, 2nd ed., Pure Appl. Math. (Amst.), 140, Elsevier, Amsterdam, 2003

[2] Bulíček M., Málek J., Rajagopal K.R., Mathematical analysis of unsteady flows of fluids with pressure, shear-rate, and temperature dependent material moduli that slip at solid boundaries, SIAM J. Math. Anal., 2009, 41(2), 665–707 http://dx.doi.org/10.1137/07069540X[Crossref][WoS] | Zbl 1195.35239

[3] Bulíček M., Málek J., Rajagopal K.R., Mathematical results concerning unsteady flows of chemically reacting incompressible fluids, In: Partial Differential Equations and Fluid Mechanics, London Math. Soc. Lecture Note Ser., 364, Cambridge University Press, Cambridge, 2009, 26–53 http://dx.doi.org/10.1017/CBO9781139107112.003[Crossref]

[4] Gajewski H., Gröger K., Zacharias K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Math. Lehrbucher und Monogr., 38, Akademie, Berlin, 1974 | Zbl 0289.47029

[5] Gripenberg G., Londen S.-O., Staffans O., Volterra Integral and Functional Equations, Encyclopedia Math. Appl., 34, Cambridge University Press, Cambridge, 1990 http://dx.doi.org/10.1017/CBO9780511662805[Crossref] | Zbl 0695.45002

[6] Málek J., Nečas J., Rokyta M., Růžička M., Weak and Measure-Valued Solutions to Evolutionary PDE, Appl. Math. Math. Comput., 13, Chapman & Hall, London, 1996 | Zbl 0851.35002

[7] Prüss J., Evolutionary Integral Equations and Applications, Monogr. Math., 87, Birkhäuser, Basel, 1993 http://dx.doi.org/10.1007/978-3-0348-8570-6[Crossref] | Zbl 0784.45006

[8] Rajagopal K.R., Wineman A.S., Applications of viscoelastic clock models in biomechanics, Acta Mech., 2010, 213(3–4), 255–266 http://dx.doi.org/10.1007/s00707-009-0262-4[Crossref][WoS] | Zbl 05795169

[9] Renardy M., Hrusa W.J., Nohel J.A., Mathematical Problems in Viscoelasticity, Pitman Monogr. Surveys Pure Appl. Math., 35, Longman Scientific & Technical, Harlow; John Wiley & Sons, New York, 1987 | Zbl 0719.73013

[10] Simon J., Compact sets in the space Lp(0; T;B), Ann. Mat. Pura Appl., 1987, 146, 65–96 http://dx.doi.org/10.1007/BF01762360 | Zbl 0629.46031

[11] Vorotnikov D.A., Zvyagin V.G., On the convergence of solutions of a regularized problem for the equations of motion of a Jeffery viscoelastic medium to the solutions of the original problem, J. Math. Sci. (N.Y.), 2007, 144(5), 4398–4408 http://dx.doi.org/10.1007/s10958-007-0277-0[Crossref] | Zbl 1160.74012

[12] Zvyagin V.G., Dmitrienko V.T., On weak solutions of a regularized model of a viscoelastic fluid, Differ. Equ., 2002, 38(12), 1731–1744 http://dx.doi.org/10.1023/A:1023860129831[Crossref] | Zbl 1070.35048