We consider a class of age-structured control problems with nonlocal dynamics and boundary conditions. For these problems we suggest Arrow-type sufficient conditions for optimality of problems defined on finite as well as infinite time intervals. We examine some models as illustrations (optimal education and optimal offence control problems).
@article{bwmeta1.element.doi-10_2478_s11533-013-0219-7, author = {Vladimir Krastev}, title = {Arrow-type sufficient conditions for optimality of age-structured control problems}, journal = {Open Mathematics}, volume = {11}, year = {2013}, pages = {1094-1111}, zbl = {1275.49038}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0219-7} }
Vladimir Krastev. Arrow-type sufficient conditions for optimality of age-structured control problems. Open Mathematics, Tome 11 (2013) pp. 1094-1111. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0219-7/
[1] Almeder C., Caulkins J.P., Feichtinger G., Tragler G., An age-structured single-state drug initiation model - cycles of drug epidemics and optimal prevention programs, Socio-Economic Planning Sciences, 2004, 38(1), 91–109 http://dx.doi.org/10.1016/S0038-0121(03)00030-2[Crossref]
[2] Aniμa S., Analysis and control of age-dependent population dynamics, Math. Model. Theory Appl., 11, Kluwer, Dordrecht, 2000
[3] Aniμa S., Iannelli M., Kim M.-Y., Park E.-J., Optimal harvesting for periodic age-dependent population dynamics, SIAM J. Appl. Math., 1998, 58(5), 1648–1666 http://dx.doi.org/10.1137/S0036139996301180[Crossref] | Zbl 0935.92030
[4] Barucci E., Gozzi F., Technology adoption and accumulation in a vintage-capital model, Journal of Economics, 2001, 74(1), 1–38 http://dx.doi.org/10.1007/BF01231214[Crossref] | Zbl 1026.91073
[5] Bazaraa M.S., Shetty C.M., Nonlinear Programming, Mir, Moscow, 1982 (in Russian)
[6] Behrens D.A., Caulkins J.P., Tragler G., Feichtinger G., Optimal control of drug epidemics: prevent and treat - but not at the same time?, Management Science, 2000, 46(3), 333–347 http://dx.doi.org/10.1287/mnsc.46.3.333.12068[Crossref] | Zbl 1231.93065
[7] Brokate M., Pontryagin’s principle for control problems in age-dependent population dynamics, J. Math. Biol., 1985, 23(1), 75–101 http://dx.doi.org/10.1007/BF00276559[Crossref] | Zbl 0599.92017
[8] Carlson D.A., Uniformly overtaking and weakly overtaking optimal solutions in infinite-horizon optimal control: when optimal solutions are agreeable, J. Optim. Theory Appl., 1990, 64(1), 55–69 http://dx.doi.org/10.1007/BF00940022[Crossref] | Zbl 0687.49023
[9] Carlson D.A., Haurie A.B., Leizarowitz A., Infinite Horizon Optimal Control, 2nd ed., Springer, Berlin-Heidelberg-New York, 1991 http://dx.doi.org/10.1007/978-3-642-76755-5 | Zbl 0758.49001
[10] Crampin M., Pirani F.A.E., Applicable Differential Geometry, London Math. Soc. Lecture Note Ser., 59, Cambridge University Press, Cambridge, 1986 | Zbl 0606.53001
[11] Faggian S., Grosset L., Optimal investment in age-structured goodwill, preprint available at http://dx.doi.org/10.2139/ssrn.2097829 [Crossref] | Zbl 1276.90035
[12] Feichtinger G., Hartl R.F., Kort P.M., Veliov V.M., Anticipation effects of technological progress on capital accumulation: a vintage capital approach, J. Econom. Theory, 2006, 126(1), 143–164 http://dx.doi.org/10.1016/j.jet.2004.10.001[Crossref] | Zbl 1108.91055
[13] Feichtinger G., Hartl R.F., Kort P.M., Veliov V.M., Capital accumulation under technological progress and learning: A vintage capital approach, European J. Oper. Res., 2006, 172(1), 293–310 http://dx.doi.org/10.1016/j.ejor.2004.07.070[Crossref] | Zbl 1116.91033
[14] Feichtinger G., Tragler G., Veliov V.M., Optimality conditions for age-structured control systems, J. Math. Anal. Appl., 2003, 288(1), 47–68 http://dx.doi.org/10.1016/j.jmaa.2003.07.001[Crossref] | Zbl 1042.49035
[15] Fichtenholz G.M., A course of differential and integral calculus, I, 8th ed., Fizmatlit, Moscow, 2003 (in Russian)
[16] Grosset L., Viscolani B., Advertising for the introduction of an age-sensitive product, Optimal Control Appl. Methods, 2005, 26(3), 157–167 http://dx.doi.org/10.1002/oca.758[Crossref]
[17] Hardy G.H., Littlewood J.E., Pólya G., Inequalities, Cambridge Math. Lib., Cambridge University Press, Cambridge, 1934
[18] Hartl R.F., Kort P.M., Feichtinger G., Offence control taking into account heterogeneity of age, J. Optim. Theory Appl., 2003, 116(3), 591–620 http://dx.doi.org/10.1023/A:1023017403842[Crossref] | Zbl 1029.49034
[19] Haurie A., Sethi S., Hartl R., Optimal control of an age-structured population model with applications to social services planning, Large Scale Systems, 1984, 6(2), 133–158 | Zbl 0565.90035
[20] Ioffe A.D., Tikhomirov V.M., Theory of Extremal Problems, Series in Nonlinear Analysis and its Applications, Nauka, Moscow, 1974 (in Russian)
[21] Pontryagin L.S., Ordinary Differential Equations, 4th ed., Nauka, Moscow, 1974 (in Russian)
[22] Prskawetz A., Tsachev T., Veliov V.M., Optimal education in an age-structured model under changing labor demand and supply, Macroecon. Dyn., 16(2), 159–183 [WoS] | Zbl 1246.91092
[23] Seierstad A., Sydsæter K., Sufficient conditions in optimal control theory, Internat. Econom. Rev., 1977, 18(2), 367–391 http://dx.doi.org/10.2307/2525753[Crossref] | Zbl 0392.49010
[24] Seierstad A., Sydsæter K., Optimal Control Theory with Economic Applications, Adv. Textbooks Econom., 24, Elsevier, Amsterdam, 2002 | Zbl 0613.49001