Around rationality of cycles
Raphaël Fino
Open Mathematics, Tome 11 (2013), p. 1068-1077 / Harvested from The Polish Digital Mathematics Library

We prove certain results comparing rationality of algebraic cycles over the function field of a quadric and over the base field. These results have already been obtained by Alexander Vishik in the case of characteristic 0, which allowed him to work with algebraic cobordism theory. Our proofs use the modulo 2 Steenrod operations in the Chow theory and work in any characteristic ≠ 2.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:268998
@article{bwmeta1.element.doi-10_2478_s11533-013-0218-8,
     author = {Rapha\"el Fino},
     title = {Around rationality of cycles},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {1068-1077},
     zbl = {1300.14006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0218-8}
}
Raphaël Fino. Around rationality of cycles. Open Mathematics, Tome 11 (2013) pp. 1068-1077. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0218-8/

[1] Brosnan P., Steenrod operations in Chow theory, Trans. Amer. Math. Soc., 2003, 355(5), 1869–1903 http://dx.doi.org/10.1090/S0002-9947-03-03224-0[Crossref] | Zbl 1045.55005

[2] Elman R., Karpenko N., Merkurjev A., The Algebraic and Geometric Theory of Quadratic Forms, Amer. Math. Soc. Colloq. Publ., 56, American Mathematical Society, Providence, 2008 | Zbl 1165.11042

[3] Fino R., Around rationality of integral cycles, J. Pure Appl. Algebra (in press), preprint available at http://www.math.uni-bielefeld.de/LAG/man/462.pdf

[4] Karpenko N.A., Variations on a theme of rationality of cycles, Cent. Eur. J. Math., 2013, 11(6), 1056–1067 http://dx.doi.org/10.2478/s11533-013-0228-6[Crossref][WoS] | Zbl 1300.14008

[5] Vishik A., Generic points of quadrics and Chow groups, Manuscripta Math., 2007, 122(3), 365–374 http://dx.doi.org/10.1007/s00229-007-0074-6[WoS][Crossref] | Zbl 1154.14003

[6] Vishik A., Symmetric operations in algebraic cobordisms, Adv. Math., 2007, 213(2), 489–552 http://dx.doi.org/10.1016/j.aim.2006.12.012[Crossref]

[7] Vishik A., Fields of u-invariant 2r + 1, In: Algebra, Arithmetic, and Geometry: in Honor of Yu.I. Manin, II, Progr. Math., 270, Birkhäuser, Boston, 2009, 661–685 http://dx.doi.org/10.1007/978-0-8176-4747-6_22[Crossref]