Galois realizability of groups of orders p 5 and p 6
Ivo Michailov
Open Mathematics, Tome 11 (2013), p. 910-923 / Harvested from The Polish Digital Mathematics Library

Let p be an odd prime and k an arbitrary field of characteristic not p. We determine the obstructions for the realizability as Galois groups over k of all groups of orders p 5 and p 6 that have an abelian quotient obtained by factoring out central subgroups of order p or p 2. These obstructions are decomposed as products of p-cyclic algebras, provided that k contains certain roots of unity.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269247
@article{bwmeta1.element.doi-10_2478_s11533-013-0217-9,
     author = {Ivo Michailov},
     title = {Galois realizability of groups of orders p 5 and p 6},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {910-923},
     zbl = {1279.12006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0217-9}
}
Ivo Michailov. Galois realizability of groups of orders p 5 and p 6. Open Mathematics, Tome 11 (2013) pp. 910-923. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0217-9/

[1] Albert A.A., Modern Higher Algebra, University of Chicago Press, Chicago, 1937

[2] Grundman H.G., Smith T.L., Galois realizability of a central C 4-extension of D 8, J. Algebra, 2009, 322(10), 3492–3498 http://dx.doi.org/10.1016/j.jalgebra.2009.08.015 | Zbl 1222.12007

[3] Grundman H.G., Smith T.L., Realizability and automatic realizability of Galois groups of order 32, Cent. Eur. J. Math., 2010, 8(2), 244–260 http://dx.doi.org/10.2478/s11533-009-0072-x | Zbl 1256.12002

[4] Grundman H.G., Smith T.L., Galois realizability of groups of order 64, Cent. Eur. J. Math., 2010, 8(5), 846–854 http://dx.doi.org/10.2478/s11533-010-0052-1 | Zbl 1256.12003

[5] Ishkhanov V.V., Lur’e B.B., Faddeev D.K., The Embedding Problem in Galois Theory, Transl. Math. Monogr., 165, Amerecian Mathematical Society, Providence, 1997

[6] James R., The groups of order p 6 (p an odd prime), Math. Comp., 1980, 34(150), 613–637 | Zbl 0428.20013

[7] Kiming I., Explicit classifications of some 2-extensions of a field of characteristic different from 2, Canad. J. Math., 1990, 42(5), 825–855 http://dx.doi.org/10.4153/CJM-1990-043-6 | Zbl 0725.12004

[8] Ledet A., On 2-groups as Galois groups, Canad. J. Math., 1995, 47(6), 1253–1273 http://dx.doi.org/10.4153/CJM-1995-064-3 | Zbl 0849.12006

[9] Ledet A., Brauer Type Embedding Problems, Fields Inst. Monogr., 21, American Mathematical Society, Providence, 2005 | Zbl 1064.12003

[10] Massy R., Construction de p-extensions galoisiennes d’un corps de caractéristique différente de p, J. Algebra, 1987, 109(2), 508–535 http://dx.doi.org/10.1016/0021-8693(87)90153-0 | Zbl 0625.12011

[11] Merkur’ev A.S., Suslin A.A., K-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk SSSR Ser. Mat., 1982, 46(5), 1011–1046 (in Russian)

[12] Michailov I.M., Groups of order 32 as Galois groups, Serdica Math. J., 2007, 33(1), 1–34 | Zbl 1199.12007

[13] Michailov I.M., Embedding obstructions for the cyclic and modular 2-groups, Math. Balkanica (N.S.), 2007, 21(1–2), 31–50 | Zbl 1219.12006

[14] Michailov I.M., Four non-abelian groups of order p 4 as Galois groups, J. Algebra, 2007, 307(1), 287–299 http://dx.doi.org/10.1016/j.jalgebra.2006.05.021 | Zbl 1171.12004

[15] Michailov I.M., On Galois cohomology and realizability of 2-groups as Galois groups, Cent. Eur. J. Math., 2011, 9(2), 2011, 403–419 http://dx.doi.org/10.2478/s11533-011-0004-4 | Zbl 1256.12004

[16] Michailov I.M., Ziapkov N.P., Embedding obstructions for the generalized quaternion group, J. Algebra, 2000, 226(1), 375–389 http://dx.doi.org/10.1006/jabr.1999.8190 | Zbl 0973.12003

[17] Michailov I.M., Ziapkov N.P., On realizability of p-groups as Galois groups, Serdica Math. J., 2011, 37(3), 173–210 | Zbl 1265.12007

[18] Pierce R.S., Associative Algebras, Grad. Texts in Math., 88, Springer, New York-Berlin, 1982 | Zbl 0497.16001