Some remarks on the stability of the multi-Jensen equation
Jens Schwaiger
Open Mathematics, Tome 11 (2013), p. 966-971 / Harvested from The Polish Digital Mathematics Library

First a stability result of Prager-Schwaiger [Prager W., Schwaiger J., Stability of the multi-Jensen equation, Bull. Korean Math. Soc., 2008, 45(1), 133–142] is generalized by admitting more general domains of the involved function and by allowing the bound to be not constant. Next a result by Cieplinski [Cieplinski K., On multi-Jensen functions and Jensen difference, Bull. Korean Math. Soc., 2008, 45(4), 729–737] is discussed. Finally a characterization of the completeness of a normed space in terms of stability requirements for multi-Jensen functions is presented.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269254
@article{bwmeta1.element.doi-10_2478_s11533-013-0215-y,
     author = {Jens Schwaiger},
     title = {Some remarks on the stability of the multi-Jensen equation},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {966-971},
     zbl = {1273.39026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0215-y}
}
Jens Schwaiger. Some remarks on the stability of the multi-Jensen equation. Open Mathematics, Tome 11 (2013) pp. 966-971. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0215-y/

[1] Brzdek J., The Cauchy and Jensen differences on semigroups, Publ. Math. Debrecen, 1996, 48(1–2), 117–136 | Zbl 0862.39011

[2] Bae J.-H., Park W.-G., On the solution of a bi-Jensen functional equation and its stability, Bull. Korean Math. Soc., 2006, 43(3), 499–507 http://dx.doi.org/10.4134/BKMS.2006.43.3.499 | Zbl 1113.39030

[3] Cieplinski K., On multi-Jensen functions and Jensen difference, Bull. Korean Math. Soc., 2008, 45(4), 729–737 http://dx.doi.org/10.4134/BKMS.2008.45.4.729

[4] Cieplinski K., Stability of the multi-Jensen equation, J. Math. Anal. Appl., 2010, 363(1), 249–254 http://dx.doi.org/10.1016/j.jmaa.2009.08.021 | Zbl 1211.39017

[5] Forti G.L., Hyers-Ulam stability of functional equations in several variables, Aequationes Math., 1995, 50(1–2), 143–190 http://dx.doi.org/10.1007/BF01831117 | Zbl 0836.39007

[6] Forti G.L., Schwaiger J., Stability of homomorphisms and completeness, C. R. Math. Rep. Acad. Sci. Canada, 1989, 11(6), 215–220 | Zbl 0697.39013

[7] Jung S.-M., Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Optim. Appl., 48, Springer, New York, 2011 | Zbl 1221.39038

[8] Prager W., Schwaiger J., Multi-affine and multi-Jensen functions and their connection with generalized polynomials, Aequationes Math., 2005, 69(1–2), 41–57 http://dx.doi.org/10.1007/s00010-004-2756-4 | Zbl 1072.39025

[9] Prager W., Schwaiger J., Stability of the multi-Jensen equation, Bull. Korean Math. Soc., 2008, 45(1), 133–142 http://dx.doi.org/10.4134/BKMS.2008.45.1.133 | Zbl 1151.39023