Singular open book structures from real mappings
Raimundo Araújo dos Santos ; Ying Chen ; Mihai Tibăr
Open Mathematics, Tome 11 (2013), p. 817-828 / Harvested from The Polish Digital Mathematics Library

We define open book structures with singular bindings. Starting with an extension of Milnor’s results on local fibrations for germs with nonisolated singularity, we find classes of genuine real analytic mappings which yield such open book structures.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269469
@article{bwmeta1.element.doi-10_2478_s11533-013-0212-1,
     author = {Raimundo Ara\'ujo dos Santos and Ying Chen and Mihai Tib\u ar},
     title = {Singular open book structures from real mappings},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {817-828},
     zbl = {1276.32024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0212-1}
}
Raimundo Araújo dos Santos; Ying Chen; Mihai Tibăr. Singular open book structures from real mappings. Open Mathematics, Tome 11 (2013) pp. 817-828. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0212-1/

[1] Araújo dos Santos R., Tibăr M., Real map germs and higher open book structures, Geom. Dedicata, 2010, 147, 177–185 http://dx.doi.org/10.1007/s10711-009-9449-z | Zbl 1202.32026

[2] Araújo dos Santos R., Tibăr M., Real map germs and higher open books, preprint available http://arxiv.org/abs/0801.3328 | Zbl 1202.32026

[3] Cisneros-Molina J.L., Join theorem for polar weighted homogeneous singularities, In: Singularities II, Cuernavaca, January 8–26, 2007, Contemp. Math., 475, American Mathematical Society, Providence, 2008, 43–59 | Zbl 1172.32008

[4] Cisneros-Molina J.L., Seade J., Snoussi J., Milnor fibrations and d-regularity for real analytic singularities, Internat. J. Math., 2010, 21(4), 419–434 http://dx.doi.org/10.1142/S0129167X10006124 | Zbl 1198.32013

[5] Ehresmann C., Les connexions infinitésimales dans un espace fibré différentiable, In: Colloque de Topologie (Espaces Fibrés), Bruxelles, 1950, Georges Thone, Liège; Masson et Cie., Paris, 1951, 29–55

[6] Gibson C.G., Wirthmüller C., du Plessis A.A., Looijenga E.J.N., Topological Stability of Smooth Mappings, Lecture Notes in Math., 552, Springer, Berlin-New York, 1976 http://dx.doi.org/10.1007/BFb0095246 | Zbl 0377.58006

[7] Hamm H.A., Lê D.T., Un théorème de Zariski du type de Lefschetz, Ann. Sci. École Norm. Sup., 1973, 6(3), 317–355

[8] Hironaka H., Stratification and flatness, In: Real and Complex Singularities, Oslo, August 5–25, 1976, Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, 199–265 http://dx.doi.org/10.1007/978-94-010-1289-8_8

[9] Jacquemard A., Fibrations de Milnor pour des applications réelles, C. R. Acad. Sci. Paris Sér. I Math., 1983, 296(10), 443–446 | Zbl 0589.32018

[10] Jacquemard A., Fibrations de Milnor pour des applications réelles, Boll. Un. Mat. Ital. B, 1989, 3(3), 591–600 | Zbl 0729.55011

[11] Lê D.T., Some remarks on relative monodromy, In: Real and Complex Singularities, Oslo, August 5–25, 1976, Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, 397–403

[12] Looijenga E., A note on polynomial isolated singularities, Indag. Math., 1971, 33, 418–421 | Zbl 0234.57010

[13] Massey D.B., Real analytic Milnor fibrations and a strong Łojasiewicz inequality, In: Real and Complex Singularities, London Math. Soc. Lecture Note Ser., 380, Cambridge University Press, Cambridge, 2010, 268–292 http://dx.doi.org/10.1017/CBO9780511731983.020 | Zbl 1222.32054

[14] Milnor J., Singular Points of Complex Hypersurfaces, Ann. of Math. Studies, 61, Princeton University Press, Princeton, 1968 | Zbl 0184.48405

[15] Némethi A., Zaharia A., Milnor fibration at infinity, Indag. Math., 1992, 3(3), 323–335 http://dx.doi.org/10.1016/0019-3577(92)90039-N | Zbl 0806.57021

[16] Oka M., Topology of polar weighted homogeneous hypersurfaces, Kodai Math. J., 2008, 31(2), 163–182 http://dx.doi.org/10.2996/kmj/1214442793

[17] Oka M., Non-degenerate mixed functions, Kodai Math. J., 2010, 33(1), 1–62 http://dx.doi.org/10.2996/kmj/1270559157

[18] Pichon A., Seade J., Fibred multilinks and singularities fḡ, Math. Ann., 2008, 342(3), 487–514 http://dx.doi.org/10.1007/s00208-008-0234-3 | Zbl 1169.32006

[19] Ruas M.A.S., Araújo dos Santos R.N., Real Milnor fibrations and (c)-regularity, Manuscripta Math., 2005, 117(2), 207–218 http://dx.doi.org/10.1007/s00229-005-0555-4 | Zbl 1084.32023

[20] Ruas M.A.S., Seade J., Verjovsky A., On real singularities with a Milnor fibration, In: Trends in Singularities, Trends Math., Birkhäuser, Basel, 2002, 191–213 http://dx.doi.org/10.1007/978-3-0348-8161-6_9 | Zbl 1020.32027

[21] Tibăr M., On the monodromy fibration of polynomial functions with singularities at infinity, C. R. Acad. Sci. Paris Sér. I Math., 1997, 324(9), 1031–1035 http://dx.doi.org/10.1016/S0764-4442(97)87881-0 | Zbl 0882.32021

[22] Tibăr M., Regularity at infinity of real and complex polynomial functions, In: Singularity Theory, Liverpool, August 18–24, 1996, London Math. Soc. Lecture Note Ser., 263, Cambridge University Press, Cambridge, 1999, 249–264

[23] Tibăr M., Polynomials and Vanishing Cycles, Cambridge Tracts in Math., 170, Cambridge University Press, Cambridge, 2007 | Zbl 1126.32026

[24] Winkelnkemper H.E., Manifolds as open books, Bull. Amer. Math. Soc., 1973, 79(1), 45–51 http://dx.doi.org/10.1090/S0002-9904-1973-13085-X | Zbl 0269.57011

[25] Wolf J.A., Differentiable fibre spaces and mappings compatible with Riemannian metrics, Michigan Math. J., 1964, 11(1), 65–70 http://dx.doi.org/10.1307/mmj/1028999036 | Zbl 0116.39202

[26] Mini-Workshop: Topology of Real Singularities and Motivic Aspects, Oberwolfach, September 30–October 3, 2012, Oberwolfach Report No. 48/2012, Mathematisches Forschungsinstitut Oberwolfach, 2012, DOI: 10.4171/OWR/2012/48