Single polynomials that correspond to pairs of cyclotomic polynomials with interlacing zeros
James McKee ; Chris Smyth
Open Mathematics, Tome 11 (2013), p. 882-899 / Harvested from The Polish Digital Mathematics Library

We give a complete classification of all pairs of cyclotomic polynomials whose zeros interlace on the unit circle, making explicit a result essentially contained in work of Beukers and Heckman. We show that each such pair corresponds to a single polynomial from a certain special class of integer polynomials, the 2-reciprocal discbionic polynomials. We also show that each such pair also corresponds (in four different ways) to a single Pisot polynomial from a certain restricted class, the cyclogenic Pisot polynomials. We investigate properties of this class of Pisot polynomials.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269581
@article{bwmeta1.element.doi-10_2478_s11533-013-0209-9,
     author = {James McKee and Chris Smyth},
     title = {Single polynomials that correspond to pairs of cyclotomic polynomials with interlacing zeros},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {882-899},
     zbl = {1272.11113},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0209-9}
}
James McKee; Chris Smyth. Single polynomials that correspond to pairs of cyclotomic polynomials with interlacing zeros. Open Mathematics, Tome 11 (2013) pp. 882-899. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0209-9/

[1] Beukers F., Heckman G., Monodromy for the hypergeometric function nF n−1, Invent. Math., 1989, 95(2), 325–354 http://dx.doi.org/10.1007/BF01393900 | Zbl 0663.30044

[2] Bober J.W., Factorial ratios, hypergeometric series, and a family of step functions, J. Lond. Math. Soc., 2009, 79(2), 422–444 http://dx.doi.org/10.1112/jlms/jdn078 | Zbl 1195.11025

[3] Boyd D.W., Small Salem numbers, Duke Math. J., 1977, 44(2), 315–328 http://dx.doi.org/10.1215/S0012-7094-77-04413-1

[4] Boyd D.W., Pisot and Salem numbers in intervals of the real line, Math. Comp., 1978, 32(144), 1244–1260 http://dx.doi.org/10.1090/S0025-5718-1978-0491587-8 | Zbl 0395.12004

[5] Brunotte H., On Garcia numbers, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 2009, 25(1), 9–16

[6] Fisk S., A very short proof of Cauchy’s interlace theorem, Amer. Math. Monthly, 2005, 112(2), 118

[7] Garsia A.M., Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math. Soc., 1962, 102(3), 409–432 http://dx.doi.org/10.1090/S0002-9947-1962-0137961-5 | Zbl 0103.36502

[8] Hardy G.H., Littlewood J.E., Pólya G., Inequalities, 2nd ed., Cambridge University Press, Cambridge, 1952

[9] Hare K.G., Panju M., Some comments on Garsia numbers, Math. Comp., 2013, 82(282), 1197–1221 http://dx.doi.org/10.1090/S0025-5718-2012-02636-6 | Zbl 1275.11137

[10] Lalín M.N., Smyth C.J., Unimodularity of zeros of self-inversive polynomials, Acta Math. Hungar., 2013, 138(1–2), 85–101 http://dx.doi.org/10.1007/s10474-012-0225-4 | Zbl 1299.26037

[11] McKee J., Smyth C.J., There are Salem numbers of every trace, Bull. London Math. Soc., 2005, 37(1), 25–36 http://dx.doi.org/10.1112/S0024609304003790 | Zbl 1166.11349

[12] McKee J., Smyth C.J., Salem numbers, Pisot numbers, Mahler measure and graphs, Experiment. Math., 2005, 14(2), 211–229 http://dx.doi.org/10.1080/10586458.2005.10128915 | Zbl 1082.11066

[13] McKee J., Smyth C.J., Salem numbers and Pisot numbers via interlacing, Canad. J. Math., 2012, 64(2), 345–367 http://dx.doi.org/10.4153/CJM-2011-051-2 | Zbl 1333.11097

[14] Robertson M.I.S., On the theory of univalent functions, Ann. of Math., 1936, 37(2), 374–408 http://dx.doi.org/10.2307/1968451 | Zbl 62.0373.05

[15] Siegel C.L., Algebraic integers whose conjugates lie in the unit circle, Duke Math. J., 1944, 11(3), 597–602 http://dx.doi.org/10.1215/S0012-7094-44-01152-X | Zbl 0063.07005