Addendum to “Ring elements as sums of units”
Charles Lanski ; Attila Maróti
Open Mathematics, Tome 11 (2013), p. 984 / Harvested from The Polish Digital Mathematics Library

We give a comment to Theorem 1.1 published in our paper “Ring elements as sums of units” [Cent. Eur. J. Math., 2009, 7(3), 395–399].

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269323
@article{bwmeta1.element.doi-10_2478_s11533-013-0208-x,
     author = {Charles Lanski and Attila Mar\'oti},
     title = {Addendum to ``Ring elements as sums of units''},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {984-984},
     zbl = {1271.16021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0208-x}
}
Charles Lanski; Attila Maróti. Addendum to “Ring elements as sums of units”. Open Mathematics, Tome 11 (2013) p. 984. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-013-0208-x/

[1] Ashrafi N., Vámos P., On the unit sum number of some rings, Q. J. Math., 2005, 56(1), 1–12 http://dx.doi.org/10.1093/qmath/hah023 | Zbl 1100.11036

[2] Lanski Ch., Maróti A., Ring elements as sums of units, Cent. Eur. J. Math., 2009, 7(3), 395–399 http://dx.doi.org/10.2478/s11533-009-0024-5 | Zbl 1185.16026

[3] Vámos P., 2-good rings, Q. J. Math., 2005, 56(3), 417–430 http://dx.doi.org/10.1093/qmath/hah046

[4] Zelinsky D., Every linear transformation is a sum of nonsingular ones, Proc. Amer. Math. Soc., 1954, 5(4), 627–630 http://dx.doi.org/10.1090/S0002-9939-1954-0062728-7 | Zbl 0056.11002