A comparison of the String Gradient Weighted Moving Finite Element method and a Parabolic Moving Mesh Partial Differential Equation method for solutions of partial differential equations
Abigail Wacher
Open Mathematics, Tome 11 (2013), p. 642-663 / Harvested from The Polish Digital Mathematics Library

We compare numerical experiments from the String Gradient Weighted Moving Finite Element method and a Parabolic Moving Mesh Partial Differential Equation method, applied to three benchmark problems based on two different partial differential equations. Both methods are described in detail and we highlight some strengths and weaknesses of each method via the numerical comparisons. The two equations used in the benchmark problems are the viscous Burgers’ equation and the porous medium equation, both in one dimension. Simulations are made for the two methods for: a) a travelling wave solution for the viscous Burgers’ equation, b) the Barenblatt selfsimilar analytical solution of the porous medium equation, and c) a waiting-time solution for the porous medium equation. Simulations are carried out for varying mesh sizes, and the numerical solutions are compared by computing errors in two ways. In the case of an analytic solution being available, the errors in the numerical solutions are computed directly from the analytic solution. In the case of no availability of an analytic solution, an approximation to the error is computed using a very fine mesh numerical solution as the reference solution.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269308
@article{bwmeta1.element.doi-10_2478_s11533-012-0161-0,
     author = {Abigail Wacher},
     title = {A comparison of the String Gradient Weighted Moving Finite Element method and a Parabolic Moving Mesh Partial Differential Equation method for solutions of partial differential equations},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {642-663},
     zbl = {1263.65097},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0161-0}
}
Abigail Wacher. A comparison of the String Gradient Weighted Moving Finite Element method and a Parabolic Moving Mesh Partial Differential Equation method for solutions of partial differential equations. Open Mathematics, Tome 11 (2013) pp. 642-663. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0161-0/

[1] Baines M.J., Moving Finite Elements, Monographs on Numerical Analysis, Oxford Sci. Publ., Clarendon Press, Oxford University Press, New York, 1994 | Zbl 0817.65082

[2] Baines M.J., Hubbard M.E., Jimack P.K., A moving finite element method using monitor functions, School of Computing Research Report, 2003.04, University of Leeds, 2003, available at http://www.engineering.leeds.ac.uk/computing/research/publications/reports/2003/2003_04.png

[3] Beckett G., Mackenzie J.A., Ramage A., Sloan D.M., On the numerical solution of one-dimensional PDEs using adaptive methods based on equidistribution, J. Comput. Phys., 2001, 167(2), 372–392 http://dx.doi.org/10.1006/jcph.2000.6679 | Zbl 0985.65097

[4] Beckett G., Mackenzie J.A., Ramage A., Sloan D.M., Computational solution of two-dimensional unsteady PDEs using moving mesh methods, J. Comput. Phys., 2002, 182(2), 478–495 http://dx.doi.org/10.1006/jcph.2002.7179 | Zbl 1016.65062

[5] Blom J.G., Verwer J.G., On the use of the arclength and curvature monitor in a moving-grid method which is based on the method of lines, Note NM-N8902, CWI, Amsterdam, 1989, available at http://oai.cwi.nl/oai/asset/5850/5850A.png

[6] de Boor C., A Practical Guide to Splines, Appl. Math. Sci., 27, Springer, New York-Berlin, 1978 http://dx.doi.org/10.1007/978-1-4612-6333-3

[7] Cao W., Huang W., Russell R.D., An r-adaptive finite element method based upon moving mesh PDEs, J. Comput. Phys., 1999, 149(2), 221–244 http://dx.doi.org/10.1006/jcph.1998.6151

[8] Carlson N.N., Miller K., Design and application of a gradient-weighted moving finite element code I: in one dimension, SIAM J. Sci. Comput., 1998, 19(3), 728–765 http://dx.doi.org/10.1137/S106482759426955X | Zbl 0911.65087

[9] Carlson N.N., Miller K., Design and application of a gradient-weighted moving finite element code II: in two dimensions, SIAM J. Sci. Comput., 1998, 19(3), 766–798 http://dx.doi.org/10.1137/S1064827594269561 | Zbl 0911.65088

[10] Dorfi E.A., Drury L.O’C., Simple adaptive grids for 1-D initial value problems, J. Comput. Phys., 1987, 69(1), 175–195 http://dx.doi.org/10.1016/0021-9991(87)90161-6 | Zbl 0607.76041

[11] Hairer E., Wanner G., Solving Ordinary Differential Equations, II, Springer Ser. Comput. Math., 14, Springer, Berlin, 1991 http://dx.doi.org/10.1007/978-3-662-09947-6

[12] Huang W., Ren Y., Russell R.D., Moving mesh partial differential equations (MMPDES) based on the equidistribution principle, SIAM J. Numer. Anal., 1994, 31(3), 709–730 http://dx.doi.org/10.1137/0731038 | Zbl 0806.65092

[13] Huang W., Russell R.D., Analysis of moving mesh partial differential equations with spatial smoothing, SIAM J. Numer. Anal., 1997, 34(3), 1106–1126 http://dx.doi.org/10.1137/S0036142993256441 | Zbl 0874.65071

[14] Huang W., Russell R.D., Moving mesh strategy based on a gradient flow equation for two-dimensional problems, SIAM J. Sci. Comput., 1999, 20(3), 998–1015 http://dx.doi.org/10.1137/S1064827596315242 | Zbl 0956.76076

[15] Huang W., Russell R.D., Adaptive Moving Mesh Methods, Appl. Math. Sci., 174, Springer, Berlin, 2011 http://dx.doi.org/10.1007/978-1-4419-7916-2 | Zbl 1227.65090

[16] Huang W., Sun W., Variational mesh adaptation II: Error estimates and monitor functions, J. Comput. Phys., 2003, 184(2), 619–648 http://dx.doi.org/10.1016/S0021-9991(02)00040-2 | Zbl 1018.65140

[17] Jeffreys H., Jeffreys B.S., Methods of Mathematical Physics, Cambridge University Press, Cambridge, 1946 | Zbl 0063.03051

[18] Jimack P.K., Wathen A.J., Temporal derivatives in the finite-element method on continuously deforming grids, SIAM J. Numer. Anal., 1991, 28(4), 990–1003 http://dx.doi.org/10.1137/0728052 | Zbl 0747.65083

[19] Lacey A.A., Initial motion of the free boundary for a nonlinear diffusion equation, IMA J. Appl. Math., 1983, 31(2), 113–119 http://dx.doi.org/10.1093/imamat/31.2.113 | Zbl 0544.76096

[20] Lacey A.A, Ockendon J.R., Tayler A.B., “Waiting-time” solutions of a nonlinear diffusion equation, SIAM J. Appl. Math., 1982, 42(6), 1252–1264 | Zbl 0531.76093

[21] Miller K., Moving finite elements II, SIAM J. Numer. Anal., 1981, 18(6), 1033–1057 http://dx.doi.org/10.1137/0718071 | Zbl 0518.65083

[22] Miller K., A geometrical-mechanical interpretation of gradient-weighted moving finite elements, SIAM J. Numer. Anal., 1997, 34(1), 67–90 http://dx.doi.org/10.1137/S0036142994260884 | Zbl 0870.65084

[23] Miller K., Miller R.N., Moving finite elements I, SIAM J. Numer. Anal., 1981, 18(6), 1019–1032 http://dx.doi.org/10.1137/0718070 | Zbl 0518.65082

[24] Ortner C., Moving Mesh Partial Differential Equations, MSc thesis, Oxford University Computing Laboratory, Oxford, 2003

[25] Wacher A., String Gradient Weighted Moving Finite Elements for Systems of Partial Differential Equations, PhD thesis, Oxford University Computing Laboratory, Oxford, 2004 | Zbl 1263.65097

[26] Wacher A., Sobey I., String Gradient Weighted Moving Finite Elements in multiple dimensions with applications in two dimensions, SIAM J. Sci. Comput., 2007, 29(2), 459–480 http://dx.doi.org/10.1137/040619557 | Zbl 1134.76034

[27] Wacher A., Sobey I., Miller K., String gradient weighted moving finite elements for systems of partial differential equations, Numerical Analysis Group Report, 03/15, Computing Laboratory, Oxford, 2003, available at http://eprints.maths.ox.ac.uk/1193/1/NA-03-15.png | Zbl 1066.65104

[28] Wathen A.J., Baines M.J., On the structure of the moving finite-element equations, IMA J. Numer. Anal., 1985, 5(2), 161–182 http://dx.doi.org/10.1093/imanum/5.2.161 | Zbl 0583.65080

[29] White A.B. Jr., On selection of equidistributing meshes for two-point boundary-value problems, SIAM J. Numer. Anal., 1979, 16(3), 472–502 http://dx.doi.org/10.1137/0716038 | Zbl 0407.65036

[30] White A.B. Jr., On the numerical solution of initial-boundary value problems in one space dimension, SIAM J. Numer. Anal., 1982, 19(4), 683–697 http://dx.doi.org/10.1137/0719048 | Zbl 0481.65055