Given information about a harmonic function in two variables, consisting of a finite number of values of its Radon projections, i.e., integrals along some chords of the unit circle, we study the problem of interpolating these data by a harmonic polynomial. With the help of symbolic summation techniques we show that this interpolation problem has a unique solution in the case when the chords form a regular polygon. Numerical experiments for this and more general cases are presented.
@article{bwmeta1.element.doi-10_2478_s11533-012-0160-1, author = {Irina Georgieva and Clemens Hofreither and Christoph Koutschan and Veronika Pillwein and Thotsaporn Thanatipanonda}, title = {Harmonic interpolation based on Radon projections along the sides of regular polygons}, journal = {Open Mathematics}, volume = {11}, year = {2013}, pages = {609-620}, zbl = {1263.41002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0160-1} }
Irina Georgieva; Clemens Hofreither; Christoph Koutschan; Veronika Pillwein; Thotsaporn Thanatipanonda. Harmonic interpolation based on Radon projections along the sides of regular polygons. Open Mathematics, Tome 11 (2013) pp. 609-620. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0160-1/
[1] Bojanov B., Draganova C., Surface approximation by piece-wise harmonic functions, In: Algorithms for Approximation V, University College, Chester, 2005, available at http://roar.uel.ac.uk/618
[2] Bojanov B., Georgieva I., Interpolation by bivariate polynomials based on Radon projections, Studia Math., 2004, 162(2), 141–160 http://dx.doi.org/10.4064/sm162-2-3 | Zbl 1060.41003
[3] Bojanov B., Petrova G., Numerical integration over a disc. A new Gaussian quadrature formula, Numer. Math., 1998, 80(1), 39–59 http://dx.doi.org/10.1007/s002110050358 | Zbl 0911.65015
[4] Bojanov B., Petrova G., Uniqueness of the Gaussian quadrature for a ball, J. Approx. Theory, 2000, 104(1), 21–44 http://dx.doi.org/10.1006/jath.1999.3442 | Zbl 0979.41020
[5] Bojanov B., Xu Y., Reconstruction of a polynomial from its Radon projections, SIAM J. Math. Anal., 2005, 37(1), 238–250 http://dx.doi.org/10.1137/040616516 | Zbl 1127.42011
[6] Cavaretta A.S. Jr., Micchelli C.A., Sharma A., Multivariate interpolation and the Radon transform, Math. Z., 1980, 174(3), 263–279 http://dx.doi.org/10.1007/BF01161414 | Zbl 0425.46054
[7] Cavaretta A.S. Jr., Micchelli C.A., Sharma A., Multivariate interpolation and the Radon transform. II. Some further examples, In: Quantitive Approximation, Bonn, August 20–24, 1979, Academic Press, New York-London, 1980, 49–62
[8] Davison M.E., Grünbaum F.A., Tomographic reconstruction with arbitrary directions, Comm. Pure Appl. Math., 1981, 34(1), 77–119 http://dx.doi.org/10.1002/cpa.3160340105 | Zbl 0441.93031
[9] Georgieva I., Hofreither C., Uluchev R., Interpolation of mixed type data by bivariate polynomials, In: Constructive Theory of Functions, Sozopol, June 3–10, 2010, Marin Drinov Academic Publishing House, Sofia, 2012, 93–107
[10] Georgieva I., Ismail S., On recovering of a bivariate polynomial from its Radon projections, In: Constructive Theory of Functions, Varna, June 1–7, 2005, Marin Drinov Academic Publishing House, Sofia, 2006, 127–134
[11] Georgieva I., Uluchev R., Smoothing of Radon projections type of data by bivariate polynomials, J. Comput. Appl. Math., 2008, 215(1), 167–181 http://dx.doi.org/10.1016/j.cam.2007.04.002 | Zbl 1144.65080
[12] Georgieva I., Uluchev R., Surface reconstruction and Lagrange basis polynomials, In: Large-Scale Scientific Computing, Sozopol, June 5–9, 2007, Lecture Notes in Comput. Sci., 4818, Springer, Berlin, 2008, 670–678 http://dx.doi.org/10.1007/978-3-540-78827-0_77
[13] Georgieva I., Uluchev R., On interpolation in the unit disk based on both Radon projections and function values, In: Large-Scale Scientific Computing, Sozopol, June 4–8, 2009, Lecture Notes in Comput. Sci., 5910, Springer, Berlin, 2010, 747–755 http://dx.doi.org/10.1007/978-3-642-12535-5_89
[14] Hakopian H., Multivariate divided differences and multivariate interpolation of Lagrange and Hermite type, J. Approx. Theory, 1982, 34(3), 286–305 http://dx.doi.org/10.1016/0021-9045(82)90019-3 | Zbl 0523.41001
[15] Hamaker C., Solmon D.C., The angles between the null spaces of X-rays, J. Math. Anal. Appl., 1978, 62(1), 1–23 http://dx.doi.org/10.1016/0022-247X(78)90214-7 | Zbl 0437.45025
[16] Jain A.K., Fundamentals of Digital Image Processing, Prentice Hall Inform. System Sci. Ser., Prentice Hall, Englewood Cliffs, 1989 | Zbl 0744.68134
[17] Koutschan C., Advanced Applications of the Holonomic Systems Approach, PhD thesis, RISC, Johannes Kepler University, Linz, 2009
[18] Koutschan C., HolonomicFunctions, available at http://www.risc.uni-linz.ac.at/research/combinat/software/HolonomicFunctions/
[19] Logan B.F., Shepp L.A., Optimal reconstruction of a function from its projections, Duke Math. J., 1975, 42(4), 645–659 http://dx.doi.org/10.1215/S0012-7094-75-04256-8 | Zbl 0343.41020
[20] Marr R.B., On the reconstruction of a function on a circular domain from a sampling of its line integrals, J. Math. Anal. Appl., 1974, 45(2), 357–374 http://dx.doi.org/10.1016/0022-247X(74)90078-X
[21] Natterer F., The Mathematics of Computerized Tomography, Classics Appl. Math., 32, SIAM, Philadelphia, 2001 | Zbl 0973.92020
[22] Nikolov G., Cubature formulae for the disk using Radon projections, East J. Approx., 2008, 14(4), 401–410 | Zbl 1217.41033
[23] Petkovšek M., Hypergeometric solutions of linear recurrences with polynomial coefficients, J. Symbolic Comput., 1992, 14(2–3), 243–264 http://dx.doi.org/10.1016/0747-7171(92)90038-6 | Zbl 0761.11008
[24] Radon J., Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Berichte über die Verhandlungen der Sächsische Akademie der Wissenschaften zu Leipzig, 1917, 69, 262–277 | Zbl 46.0436.02
[25] Zeilberger D., A holonomic systems approach to special functions identities, J. Comput. Appl. Math., 1990, 32(3), 321–368 http://dx.doi.org/10.1016/0377-0427(90)90042-X
[26] Zeilberger D., The method of creative telescoping, J. Symbolic Comput., 1991, 11(3), 195–204 http://dx.doi.org/10.1016/S0747-7171(08)80044-2 | Zbl 0738.33002