An averaging method for the second-order approximation of the values of the gradient of an arbitrary smooth function u = u(x 1, x 2) at the vertices of a regular triangulation T h composed both of rectangles and triangles is presented. The method assumes that only the interpolant Πh[u] of u in the finite element space of the linear triangular and bilinear rectangular finite elements from T h is known. A complete analysis of this method is an extension of the complete analysis concerning the finite element spaces of linear triangular elements from [Dalík J., Averaging of directional derivatives in vertices of nonobtuse regular triangulations, Numer. Math., 2010, 116(4), 619–644]. The second-order approximation of the gradient is extended from the vertices to the whole domain and applied to the a posteriori error estimates of the finite element solutions of the planar elliptic boundary-value problems of second order. Numerical illustrations of the accuracy of the averaging method and of the quality of the a posteriori error estimates are also presented.
@article{bwmeta1.element.doi-10_2478_s11533-012-0159-7, author = {Josef Dal\'\i k and V\'aclav Valenta}, title = {Averaging of gradient in the space of linear triangular and bilinear rectangular finite elements}, journal = {Open Mathematics}, volume = {11}, year = {2013}, pages = {597-608}, zbl = {1263.65111}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0159-7} }
Josef Dalík; Václav Valenta. Averaging of gradient in the space of linear triangular and bilinear rectangular finite elements. Open Mathematics, Tome 11 (2013) pp. 597-608. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0159-7/
[1] Ainsworth M., Oden J.T., A Posteriori Error Estimation in Finite Element Analysis, Pure Appl. Math. (N.Y.), John Wiley & Sons, New York, 2000 | Zbl 1008.65076
[2] Babuška I., Rheinboldt W.C., A-posteriori error estimates for the finite element method, Internat. J. Numer. Methods Engrg., 1978, 12(10), 1597–1615 http://dx.doi.org/10.1002/nme.1620121010 | Zbl 0396.65068
[3] Babuška I., Strouboulis T., The Finite Element Method and its Reliability, Numer. Math. Sci. Comput., Clarendon Press, Oxford University Press, New York, 2001 | Zbl 0995.65501
[4] Chen C., Huang Y., High Accuracy Theory of Finite Element Methods, Hunan Science and Technology Press, Changsha, 1995 (in Chinese)
[5] Dalík J., Averaging of directional derivatives in vertices of nonobtuse regular triangulations, Numer. Math., 2010, 116(4), 619–644 http://dx.doi.org/10.1007/s00211-010-0316-5 | Zbl 1215.65044
[6] Dalík J., Approximations of the partial derivatives by averaging, Cent. Eur. J. Math., 10(1), 2012, 44–54 http://dx.doi.org/10.2478/s11533-011-0107-y
[7] Haug E.J., Choi K.K., Komkov V., Design sensitivity analysis of structural systems, Math. Sci. Eng., 177, Academic Press, Orlando, 1986 | Zbl 0618.73106
[8] Hlaváček I., Křížek M., Pištora V., How to recover the gradient of linear elements on nonuniform triangulations, Appl. Math., 1996, 41(4), 241–267 | Zbl 0870.65093
[9] Křížek M., Neittaanmäki P., Superconvergence phenomenon in the finite element method arising from averaging gradients, Numer. Math., 1984, 45(1), 105–116 http://dx.doi.org/10.1007/BF01379664 | Zbl 0575.65104
[10] Lin Q., Yan N., The Construction and Analysis of High Efficiency Finite Elements, Hebei University Press, Hunan, 1996 (in Chinese)
[11] Verfürth R., A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Teubner Skr. Numer., Wiley-Teubner, Stuttgart, 1996 | Zbl 0853.65108
[12] Wahlbin L.B., Superconvergence in Galerkin Finite Element Methods, Lecture Notes in Math., 1605, Springer, Berlin, 1995 | Zbl 0826.65092
[13] Zienkiewicz O.C., Cheung Y.K., The Finite Element Method in Structural and Continuum Mechanics, European civil engineering series, McGraw-Hill, London-New York, 1967 | Zbl 0189.24902
[14] Zienkiewicz O.C., Zhu J.Z., The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique, Internat. J. Numer. Methods Engrg., 1992, 33(7), 1331–1364 http://dx.doi.org/10.1002/nme.1620330702 | Zbl 0769.73084
[15] Zlámal M., Superconvergence and reduced integration in the finite element method, Math. Comput., 1978, 32(143), 663–685 | Zbl 0448.65068