The aim of this paper is to discuss one of the most interesting and unsolved problems of the real series theory: rearrangements that preserve sums of series. Certain hypothesis about combinatorial description of the corresponding permutations is presented and basic algebraic properties of the family , introduced by it, are investigated.
@article{bwmeta1.element.doi-10_2478_s11533-012-0156-x, author = {Roman Witu\l a}, title = {Permutations preserving sums of rearranged real series}, journal = {Open Mathematics}, volume = {11}, year = {2013}, pages = {956-965}, zbl = {1276.40001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0156-x} }
Roman Wituła. Permutations preserving sums of rearranged real series. Open Mathematics, Tome 11 (2013) pp. 956-965. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0156-x/
[1] Agnew R.P., Permutations preserving convergence of series, Proc. Amer. Math. Soc., 1955, 6(4), 563–564 http://dx.doi.org/10.1090/S0002-9939-1955-0071559-4 | Zbl 0067.28601
[2] Garibay F., Greenberg P., Reséndis L., Rivaud J.J., The geometry of sum-preserving permutations, Pacific J. Math., 1988, 135(2), 313–322 http://dx.doi.org/10.2140/pjm.1988.135.313 | Zbl 0694.40003
[3] Guha U.C., On Levi’s theorem on rearrangement of convergent series, Indian J. Math., 1967, 9, 91–93 | Zbl 0173.05801
[4] Hu M.C., Wang J.K., On rearrangements of series, Bull. Inst. Math. Acad. Sinica, 1979, 7(4), 363–376 | Zbl 0429.40001
[5] Kronrod A., On permutation of terms of numerical series, Mat. Sbornik, 1946, 18(60), 237–280 (in Russian) | Zbl 0061.11809
[6] Levi F.W., Rearrangement of convergent series, Duke Math. J., 1946, 13, 579–585 http://dx.doi.org/10.1215/S0012-7094-46-01348-8 | Zbl 0060.15405
[7] Pleasants P.A.B., Rearrangements that preserve convergence, J. London Math. Soc., 1977, 15(1), 134–142 http://dx.doi.org/10.1112/jlms/s2-15.1.134 | Zbl 0344.40001
[8] Pleasants P.A.B., Addendum: “Rearrangements that preserve convergence”, J. Lond. Math. Soc., 1978, 18(3), 576 http://dx.doi.org/10.1112/jlms/s2-18.3.576-s | Zbl 0368.40003
[9] Schaefer P., Sum-preserving rearrangements of infinite series, Amer. Math. Monthly, 1981, 88(1), 33–40 http://dx.doi.org/10.2307/2320709 | Zbl 0455.40007
[10] Stoller G.S., The convergence-preserving rearrangements of real infinite series, Pacific J. Math., 1977, 73(1), 227–231 http://dx.doi.org/10.2140/pjm.1977.73.227 | Zbl 0364.40001
[11] Wituła R., Convergence-preserving functions, Nieuw Arch. Wisk., 1995, 13(1), 31–35 | Zbl 0858.40004
[12] Wituła R., The Riemann theorem and divergent permutations, Colloq. Math., 1995, 69(2), 275–287 | Zbl 0840.40002
[13] Wituła R., On the set of limit points of the partial sums of series rearranged by a given divergent permutation, J. Math. Anal. Appl., 2010, 362(2), 542–552 http://dx.doi.org/10.1016/j.jmaa.2009.09.028 | Zbl 1187.40007
[14] Wituła R., On algebraic properties of some subsets of families of convergent and divergent permutations (manuscript) | Zbl 1313.40004
[15] Wituła R., The algebraic properties of the convergent and divergent permutations (manuscript) | Zbl 1313.40004
[16] Wituła R., The family of permutations of ℕ (manuscript)
[17] Wituła R., Słota D., Seweryn R., On Erdös’ theorem for monotonic subsequences, Demonstratio Math., 2007, 40(2), 239–259 | Zbl 1129.05003
[18] Nash-Williams C.St.J.A., White D.J., An application of network flows to rearrangement of series, J. Lond. Math. Soc., 1999, 59(2), 637–646 http://dx.doi.org/10.1112/S0024610799007292
[19] Nash-Williams C.St.J.A., White D.J., Rearrangement of vector series. I, Math. Proc. Cambridge Philos. Soc., 2001, 130(1), 89–109 http://dx.doi.org/10.1017/S0305004100004813 | Zbl 0984.40004
[20] Nash-Williams C.St.J.A., White D.J., Rearrangement of vector series. II, Math. Proc. Cambridge Philos. Soc., 2001, 130(1), 111–134 http://dx.doi.org/10.1017/S0305004100004825 | Zbl 0984.40005