Permutations preserving sums of rearranged real series
Roman Wituła
Open Mathematics, Tome 11 (2013), p. 956-965 / Harvested from The Polish Digital Mathematics Library

The aim of this paper is to discuss one of the most interesting and unsolved problems of the real series theory: rearrangements that preserve sums of series. Certain hypothesis about combinatorial description of the corresponding permutations is presented and basic algebraic properties of the family 𝔖0, introduced by it, are investigated.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:268997
@article{bwmeta1.element.doi-10_2478_s11533-012-0156-x,
     author = {Roman Witu\l a},
     title = {Permutations preserving sums of rearranged real series},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {956-965},
     zbl = {1276.40001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0156-x}
}
Roman Wituła. Permutations preserving sums of rearranged real series. Open Mathematics, Tome 11 (2013) pp. 956-965. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0156-x/

[1] Agnew R.P., Permutations preserving convergence of series, Proc. Amer. Math. Soc., 1955, 6(4), 563–564 http://dx.doi.org/10.1090/S0002-9939-1955-0071559-4 | Zbl 0067.28601

[2] Garibay F., Greenberg P., Reséndis L., Rivaud J.J., The geometry of sum-preserving permutations, Pacific J. Math., 1988, 135(2), 313–322 http://dx.doi.org/10.2140/pjm.1988.135.313 | Zbl 0694.40003

[3] Guha U.C., On Levi’s theorem on rearrangement of convergent series, Indian J. Math., 1967, 9, 91–93 | Zbl 0173.05801

[4] Hu M.C., Wang J.K., On rearrangements of series, Bull. Inst. Math. Acad. Sinica, 1979, 7(4), 363–376 | Zbl 0429.40001

[5] Kronrod A., On permutation of terms of numerical series, Mat. Sbornik, 1946, 18(60), 237–280 (in Russian) | Zbl 0061.11809

[6] Levi F.W., Rearrangement of convergent series, Duke Math. J., 1946, 13, 579–585 http://dx.doi.org/10.1215/S0012-7094-46-01348-8 | Zbl 0060.15405

[7] Pleasants P.A.B., Rearrangements that preserve convergence, J. London Math. Soc., 1977, 15(1), 134–142 http://dx.doi.org/10.1112/jlms/s2-15.1.134 | Zbl 0344.40001

[8] Pleasants P.A.B., Addendum: “Rearrangements that preserve convergence”, J. Lond. Math. Soc., 1978, 18(3), 576 http://dx.doi.org/10.1112/jlms/s2-18.3.576-s | Zbl 0368.40003

[9] Schaefer P., Sum-preserving rearrangements of infinite series, Amer. Math. Monthly, 1981, 88(1), 33–40 http://dx.doi.org/10.2307/2320709 | Zbl 0455.40007

[10] Stoller G.S., The convergence-preserving rearrangements of real infinite series, Pacific J. Math., 1977, 73(1), 227–231 http://dx.doi.org/10.2140/pjm.1977.73.227 | Zbl 0364.40001

[11] Wituła R., Convergence-preserving functions, Nieuw Arch. Wisk., 1995, 13(1), 31–35 | Zbl 0858.40004

[12] Wituła R., The Riemann theorem and divergent permutations, Colloq. Math., 1995, 69(2), 275–287 | Zbl 0840.40002

[13] Wituła R., On the set of limit points of the partial sums of series rearranged by a given divergent permutation, J. Math. Anal. Appl., 2010, 362(2), 542–552 http://dx.doi.org/10.1016/j.jmaa.2009.09.028 | Zbl 1187.40007

[14] Wituła R., On algebraic properties of some subsets of families of convergent and divergent permutations (manuscript) | Zbl 1313.40004

[15] Wituła R., The algebraic properties of the convergent and divergent permutations (manuscript) | Zbl 1313.40004

[16] Wituła R., The family 𝔉 of permutations of ℕ (manuscript)

[17] Wituła R., Słota D., Seweryn R., On Erdös’ theorem for monotonic subsequences, Demonstratio Math., 2007, 40(2), 239–259 | Zbl 1129.05003

[18] Nash-Williams C.St.J.A., White D.J., An application of network flows to rearrangement of series, J. Lond. Math. Soc., 1999, 59(2), 637–646 http://dx.doi.org/10.1112/S0024610799007292

[19] Nash-Williams C.St.J.A., White D.J., Rearrangement of vector series. I, Math. Proc. Cambridge Philos. Soc., 2001, 130(1), 89–109 http://dx.doi.org/10.1017/S0305004100004813 | Zbl 0984.40004

[20] Nash-Williams C.St.J.A., White D.J., Rearrangement of vector series. II, Math. Proc. Cambridge Philos. Soc., 2001, 130(1), 111–134 http://dx.doi.org/10.1017/S0305004100004825 | Zbl 0984.40005