Revisiting the construction of gap functions for variational inequalities and equilibrium problems via conjugate duality
Liana Cioban ; Ernö Csetnek
Open Mathematics, Tome 11 (2013), p. 829-850 / Harvested from The Polish Digital Mathematics Library

Based on conjugate duality we construct several gap functions for general variational inequalities and equilibrium problems, in the formulation of which a so-called perturbation function is used. These functions are written with the help of the Fenchel-Moreau conjugate of the functions involved. In case we are working in the convex setting and a regularity condition is fulfilled, these functions become gap functions. The techniques used are the ones considered in [Altangerel L., Boţ R.I., Wanka G., On gap functions for equilibrium problems via Fenchel duality, Pac. J. Optim., 2006, 2(3), 667–678] and [Altangerel L., Boţ R.I., Wanka G., On the construction of gap functions for variational inequalities via conjugate duality, Asia-Pac. J. Oper. Res., 2007, 24(3), 353–371]. By particularizing the perturbation function we rediscover several gap functions from the literature. We also characterize the solutions of various variational inequalities and equilibrium problems by means of the properties of the convex subdifferential. In case no regularity condition is fulfilled, we deliver also necessary and sufficient sequential characterizations for these solutions. Several examples are illustrating the theoretical aspects.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269363
@article{bwmeta1.element.doi-10_2478_s11533-012-0151-2,
     author = {Liana Cioban and Ern\"o Csetnek},
     title = {Revisiting the construction of gap functions for variational inequalities and equilibrium problems via conjugate duality},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {829-850},
     zbl = {1267.49009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0151-2}
}
Liana Cioban; Ernö Csetnek. Revisiting the construction of gap functions for variational inequalities and equilibrium problems via conjugate duality. Open Mathematics, Tome 11 (2013) pp. 829-850. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0151-2/

[1] Altangerel L., Boţ R.I., Wanka G., On gap functions for equilibrium problems via Fenchel duality, Pac. J. Optim., 2006, 2(3), 667–678 | Zbl 1103.49016

[2] Altangerel L., Boţ R.I., Wanka G., On the construction of gap functions for variational inequalities via conjugate duality, Asia-Pac. J. Oper. Res., 2007, 24(3), 353–371 http://dx.doi.org/10.1142/S0217595907001309 | Zbl 1141.49303

[3] Auslender A., Optimisation, Masson, Paris-New York-Barcelona, 1976

[4] Aussel D., Hadjisavvas N., On quasimonotone variational inequalities, J. Optim. Theory Appl., 2004, 121(2), 445–450 http://dx.doi.org/10.1023/B:JOTA.0000037413.45495.00 | Zbl 1062.49006

[5] Bauschke H.H., Combettes P.L., Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books Math./Ouvrages Math. SMC, Springer, New York, 2011 | Zbl 1218.47001

[6] Blum E., Oettli W., From optimization and variational inequalities to equilibrium problems, Math. Student, 1994, 63(1–4), 123–145 | Zbl 0888.49007

[7] Boţ R.I., Conjugate Duality in Convex Optimization, Lecture Notes in Econom. and Math. Systems, 637, Springer, Berlin, 2010 | Zbl 1190.90002

[8] Boţ R.I., Capătă A.E., Existence results and gap functions for the generalized equilibrium problem with composed functions, Nonlinear Anal., 2010, 72(1), 316–324 http://dx.doi.org/10.1016/j.na.2009.06.055 | Zbl 1180.49001

[9] Boţ R.I., Csetnek E.R., Regularity conditions via generalized interiority notions in convex optimization: new achievements and their relation to some classical statements, Optimization, 2012, 61(1), 35–65 http://dx.doi.org/10.1080/02331934.2010.505649 | Zbl 1246.46062

[10] Boţ R.I., Csetnek E.R., Wanka G., Sequential optimality conditions in convex programming via perturbation approach, J. Convex Anal., 2008, 15(1), 149–164 | Zbl 1144.90018

[11] Boţ R.I., Csetnek E.R., Wanka G., Sequential optimality conditions for composed convex optimization problems, J. Math. Anal. Appl., 2008, 342(2), 1015–1025 http://dx.doi.org/10.1016/j.jmaa.2007.12.066 | Zbl 1220.90087

[12] Boţ R.I., Grad S.-M., Lower semicontinuous type regularity conditions for subdifferential calculus, Optim. Methods Softw., 2010, 25(1), 37–48 http://dx.doi.org/10.1080/10556780903208977 | Zbl 1220.90158

[13] Boţ R.I., Grad S.-M., Wanka G., Duality in Vector Optimization, Vector Optim., Springer, Berlin, 2009 | Zbl 1177.90355

[14] Boţ R.I., Wanka G., A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces, Nonlinear Anal., 2006, 64(12), 2787–2804 http://dx.doi.org/10.1016/j.na.2005.09.017 | Zbl 1087.49026

[15] Burachik R.S., Jeyakumar V., A new geometric condition for Fenchel’s duality in infinite dimensional spaces, Math. Program., 2005, 104(2-3), 229–233 http://dx.doi.org/10.1007/s10107-005-0614-3 | Zbl 1093.90077

[16] Burachik R.S., Jeyakumar V., Wu Z.-Y., Necessary and sufficient conditions for stable conjugate duality, Nonlinear Anal., 2006, 64(9), 1998–2006 http://dx.doi.org/10.1016/j.na.2005.07.034 | Zbl 1091.49031

[17] Chen G.Y., Goh C.J., Yang X.Q., On gap functions and duality of variational inequality problems, J. Math. Anal. Appl., 1997, 214(2), 658–673 http://dx.doi.org/10.1006/jmaa.1997.5608

[18] Cioban L., Csetnek E.R., Duality for ɛ-variational inequalities via the subdifferential calculus, Nonlinear Anal., 2012, 75(6), 3142–3156 http://dx.doi.org/10.1016/j.na.2011.12.012 | Zbl 1236.58028

[19] Csetnek E.R., Overcoming the Failure of the Classical Generalized Interior-point Regularity Conditions in Convex Optimization. Applications of the Duality Theory to Enlargements of Maximal Monotone Operators, Logos, Berlin, 2010

[20] Dinh N., Strodiot J.J., Nguyen V.H., Duality and optimality conditions for generalized equilibrium problems involving DC functions, J. Global Optim., 2010, 48(2), 183–208 http://dx.doi.org/10.1007/s10898-009-9486-z | Zbl 1228.90078

[21] Ekeland I., Temam R., Convex Analysis and Variational Problems, Stud. Math. Appl., 1, North-Holland, Amsterdam-Oxford, 1976 | Zbl 0322.90046

[22] Facchinei F., Pang J.-S., Finite-Dimensional Variational Inequalities and Complementarity Problems, I, II, Springer Ser. Oper. Res., Springer, New York, 2003 | Zbl 1062.90002

[23] Giannessi F., On some connections among variational inequalities, combinatorial and continuous optimization, Ann. Oper. Res., 1995, 58, 181–200 http://dx.doi.org/10.1007/BF02032131 | Zbl 0844.90069

[24] Giannessi F., On Minty variational principle, In: New Trends in Mathematical Programming, Appl. Optim., 13, Kluwer, Boston, 1998, 93–99 | Zbl 0909.90253

[25] Goh C.J., Yang X.Q., Duality in Optimization and Variational Inequalities, Optim. Theory Appl., 2, Taylor & Francis, London, 2002 | Zbl 1125.90059

[26] Gowda M.S., Teboulle M., A comparison of constraint qualifications in infinite-dimensional convex programming, SIAM J. Control Optim., 1990, 28(4), 925–935 http://dx.doi.org/10.1137/0328051 | Zbl 0713.49042

[27] Harker P.T., Pang J.-S., Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications, Math. Programming, 1990, 48(2), 161–220 http://dx.doi.org/10.1007/BF01582255 | Zbl 0734.90098

[28] Hiriart-Urruty J.-B., Lemaréchal C., Convex Analysis and Minimization Algorithms, I, II, Grundlehren Math. Wiss., 305, 306, Springer, Berlin, 1993

[29] Jeyakumar V., Li G.Y., Stable zero duality gaps in convex programming: complete dual characterisations with applications to semidefinite programs, J. Math. Anal. Appl., 2009, 360(1), 156–167 http://dx.doi.org/10.1016/j.jmaa.2009.06.043 | Zbl 1208.90134

[30] Jeyakumar V., Song W., Dinh N., Lee G.M., Stable strong duality in convex optimization, Applied Mathematics Report, 05/22, University of New South Wales, Sydney, 2005

[31] Kinderlehrer D., Stampacchia G., An Introduction to Variational Inequalities and their Applications, Pure Appl. Math., 88, Academic Press, New York-London, 1980 | Zbl 0457.35001

[32] Konnov I.V., Schaible S., Duality for equilibrium problems under generalized monotonicity, J. Optim. Theory Appl., 2000, 104(2), 395–408 http://dx.doi.org/10.1023/A:1004665830923 | Zbl 1016.90066

[33] Mosco U., Dual variational inequalities, J. Math. Anal. Appl., 1972, 40(1), 202–206 http://dx.doi.org/10.1016/0022-247X(72)90043-1

[34] Rockafellar R.T., Duality and stability in extremum problems involving convex functions, Pacific J. Math., 1967, 21, 167–187 http://dx.doi.org/10.2140/pjm.1967.21.167 | Zbl 0154.44902

[35] Rockafellar R.T., Convex Analysis, Princeton Math. Ser., 28, Princeton University Press, Princeton, 1970 | Zbl 0193.18401

[36] Yao J.C., Variational inequalities with generalized monotone operators, Math. Oper. Res., 1994, 19(3), 691–705 http://dx.doi.org/10.1287/moor.19.3.691 | Zbl 0813.49010

[37] Zălinescu C., Convex Analysis in General Vector Spaces, World Scientific, River Edge, 2002 http://dx.doi.org/10.1142/5021

[38] Zhang J., Wan C., Xiu N., The dual gap function for variational inequalities, Appl. Math. Optim., 2003, 48(2), 129–148 http://dx.doi.org/10.1007/s00245-003-0771-9 | Zbl 1048.49007