Geometry and dynamics of admissible metrics in measure spaces
Anatoly Vershik ; Pavel Zatitskiy ; Fedor Petrov
Open Mathematics, Tome 11 (2013), p. 379-400 / Harvested from The Polish Digital Mathematics Library

We study a wide class of metrics in a Lebesgue space, namely the class of so-called admissible metrics. We consider the cone of admissible metrics, introduce a special norm in it, prove compactness criteria, define the ɛ-entropy of a measure space with an admissible metric, etc. These notions and related results are applied to the theory of transformations with invariant measure; namely, we study the asymptotic properties of orbits in the cone of admissible metrics with respect to a given transformation or a group of transformations. The main result of this paper is a new discreteness criterion for the spectrum of an ergodic transformation: we prove that the spectrum is discrete if and only if the ɛ-entropy of the averages of some (and hence any) admissible metric over its trajectory is uniformly bounded.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269752
@article{bwmeta1.element.doi-10_2478_s11533-012-0149-9,
     author = {Anatoly Vershik and Pavel Zatitskiy and Fedor Petrov},
     title = {Geometry and dynamics of admissible metrics in measure spaces},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {379-400},
     zbl = {1261.37004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0149-9}
}
Anatoly Vershik; Pavel Zatitskiy; Fedor Petrov. Geometry and dynamics of admissible metrics in measure spaces. Open Mathematics, Tome 11 (2013) pp. 379-400. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0149-9/

[1] Feldman J., r-entropy, equipartition, and Ornstein’s isomorphism theorem in ℝn, Israel J. Math., 1980, 36(3–4), 321–345 http://dx.doi.org/10.1007/BF02762054[Crossref]

[2] Ferenczi S., Measure-theoretic complexity of ergodic systems, Israel J. Math., 1997, 100, 189–207 http://dx.doi.org/10.1007/BF02773640[Crossref] | Zbl 1095.28510

[3] Ferenczi S., Park K.K., Entropy dimensions and a class of constructive examples, Discrete Contin. Dyn. Syst., 2007, 17(1), 133–141 | Zbl 1128.37004

[4] Gromov M., Metric Structures for Riemannian and Non-Riemannian Spaces, Progr. Math., 152, Birkhäuser, Boston, 1999

[5] Katok A., Thouvenot J.-P., Slow entropy type invariants and smooth realization of commuting measure-preserving transformation, Ann. Inst. H.Poincaré, 1997, 33(3), 323–338 http://dx.doi.org/10.1016/S0246-0203(97)80094-5[Crossref] | Zbl 0884.60009

[6] Kushnirenko A.G., Metric invariants of entropy type, Russian Math. Surveys, 1967, 22(5), 53–61 http://dx.doi.org/10.1070/RM1967v022n05ABEH001225[Crossref] | Zbl 0169.46101

[7] Ornstein D.S., Weiss B., Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math., 1987, 48, 1–141 http://dx.doi.org/10.1007/BF02790325[Crossref] | Zbl 0637.28015

[8] Rokhlin V.A., On the fundamental ideas of measure theory, Mat. Sb., 1949, 25(67)(2), 107–150 (in Russian)

[9] Stromberg K., An elementary proof of Steinhaus’s theorem, Proc. Amer. Math. Soc., 1972, 36(1), 308 | Zbl 0278.28013

[10] Vershik A.M., The universal Uryson space, Gromov’s metric triples, and random metrics on the series of natural numbers, Russian Math. Surveys, 1998, 53(5), 921–928 http://dx.doi.org/10.1070/RM1998v053n05ABEH000069[Crossref] | Zbl 1005.53036

[11] Vershik A.M., Dynamic theory of growth in groups: entropy, boundaries, examples, Russian Math. Surveys, 2000, 55(4), 667–733 http://dx.doi.org/10.1070/RM2000v055n04ABEH000314[Crossref] | Zbl 0991.37005

[12] Vershik A.M., Classification of measurable functions of several arguments, and invariantly distributed random matrices, Funct. Anal. Appl., 2002, 36(2), 93–105 http://dx.doi.org/10.1023/A:1015662321953[Crossref]

[13] Vershik A.M., Random and universal metric spaces, In: Fundamental Mathematics Today, Independent University of Moscow, Moscow, 2003, 54–88 (in Russian)

[14] Vershik A.M., Random metric spaces and universality, Russian Math. Surveys, 2004, 59(2), 259–295 http://dx.doi.org/10.1070/RM2004v059n02ABEH000718[Crossref]

[15] Vershik A.M., Dynamics of metrics in measure spaces and their asymptotic invariant, Markov Process. Related Fields, 2010, 16(1), 169–184 | Zbl 1203.37020

[16] Vershik A.M., Information, entropy, dynamics, In: Mathematics of the 20th Century. A View from Petersburg, Moscow Center for Continuous Mathematical Education, Moscow, 2010, 47–76 (in Russian)

[17] Vershik A.M., Scaling entropy and automorphisms with pure point spectrum, St. Petersburg Math. J., 2012, 23(1), 75–91 http://dx.doi.org/10.1090/S1061-0022-2011-01187-2[Crossref]

[18] Vershik A.M., Gorbulsky A.D., Scaled entropy of filtrations of σ-fields, Theory Probab. Appl., 2008, 52(3), 493–508 http://dx.doi.org/10.1137/S0040585X97983122[Crossref] | Zbl 1161.28005

[19] Zatitskiy P.B., Petrov F.V., Correction of metrics, J. Math. Sci., 2012, 181(6), 867–870 http://dx.doi.org/10.1007/s10958-012-0720-8[Crossref] | Zbl 1259.28018