In this paper we obtain several basic formulas for generalized integral transforms, convolution products, first variations and inverse integral transforms of functionals defined on function space.
@article{bwmeta1.element.doi-10_2478_s11533-012-0148-x, author = {Seung Chang and Hyun Chung and David Skoug}, title = {Some basic relationships among transforms, convolution products, first variations and inverse transforms}, journal = {Open Mathematics}, volume = {11}, year = {2013}, pages = {538-551}, zbl = {1260.28013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0148-x} }
Seung Chang; Hyun Chung; David Skoug. Some basic relationships among transforms, convolution products, first variations and inverse transforms. Open Mathematics, Tome 11 (2013) pp. 538-551. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0148-x/
[1] Cameron R.H., Martin W.T., Fourier-Wiener transforms of analytic functionals, Duke Math. J., 1945, 12, 489–507 http://dx.doi.org/10.1215/S0012-7094-45-01244-0[Crossref] | Zbl 0060.27502
[2] Cameron R.H., Martin W.T., Fourier-Wiener transforms of functionals belonging to L 2 over the space C, Duke Math. J., 1947, 14, 99–107 http://dx.doi.org/10.1215/S0012-7094-47-01409-9[Crossref] | Zbl 0029.40002
[3] Cameron R.H., Storvick D.A., An L 2 analytic Fourier-Feynman transform, Michigan Math. J., 1976, 23(1), 1–30 http://dx.doi.org/10.1307/mmj/1029001617[Crossref]
[4] Chang K.S., Kim B.S., Yoo I., Integral transform and convolution of analytic functionals on abstract Wiener space, Numer. Funct. Anal. Optim., 2000, 21(1–2), 97–105 [Crossref] | Zbl 0948.28008
[5] Chang S.J., Choi J.G., Skoug D., Generalized Fourier-Feynman transforms, convolution products and first variations on function space, Rocky Mountain J. Math., 2010, 40(3), 761–788 http://dx.doi.org/10.1216/RMJ-2010-40-3-761[Crossref][WoS] | Zbl 1202.60133
[6] Chang S.J., Chung D.M., Conditional function space integrals with applications, Rocky Mountain J. Math., 1996, 26(1), 37–62 http://dx.doi.org/10.1216/rmjm/1181072102[Crossref]
[7] Chang S.J., Chung H.S., Generalized Fourier-Wiener function space transforms, J. Korean Math. Soc., 2009, 46(2), 327–345 http://dx.doi.org/10.4134/JKMS.2009.46.2.327[Crossref] | Zbl 1178.28024
[8] Chang S.J., Chung H.S., Skoug D., Integral transforms of functionals in L 2(C a;b[0; T]), J. Fourier Anal. Appl., 2009, 15(4), 441–462 http://dx.doi.org/10.1007/s00041-009-9076-y | Zbl 1185.28023
[9] Chang S.J., Chung H.S., Skoug D., Convolution products, integral transforms and inverse integral transforms of functionals in L 2(C 0[0; T]), Integral Transforms Spec. Funct., 2010, 21(1–2), 143–151 http://dx.doi.org/10.1080/10652460903063382 | Zbl 1202.28015
[10] Chang S.J., Skoug D., Generalized Fourier-Feynman transforms and a first variation on function space, Integral Transforms Spec. Funct., 2003, 14(5), 375–393 http://dx.doi.org/10.1080/1065246031000074425[Crossref] | Zbl 1043.28014
[11] Johnson G.W., Skoug D.L., An L p analytic Fourier-Feynman transform, Michigan Math. J., 1979, 26(1), 103–127 http://dx.doi.org/10.1307/mmj/1029002166[Crossref]
[12] Kim B.J., Kim B.S., Skoug D., Integral transforms, convolution products, and first variations, Int. J. Math. Math. Sci., 2004, 11, 579–598 http://dx.doi.org/10.1155/S0161171204305260[Crossref] | Zbl 1104.28010
[13] Kim B.S., Skoug D., Integral transforms of functionals in L 2(C 0[0; T]), Rocky Mountain J. Math., 2003, 33(4), 1379–1393 http://dx.doi.org/10.1216/rmjm/1181075469 | Zbl 1062.28017
[14] Lee Y.J., Integral transforms of analytic functions on abstract Wiener spaces, J. Funct. Anal., 1982, 47(2), 153–164 http://dx.doi.org/10.1016/0022-1236(82)90103-3[Crossref]
[15] Lee Y.-J., Unitary operators on the space of L 2-functions over abstract Wiener spaces, Soochow J. Math., 1987, 13(2), 165–174 | Zbl 0661.46042
[16] Nelson E., Dynamical Theories of Brownian Motion, Princeton University Press, Princeton, 1967 | Zbl 0165.58502
[17] Yeh J., Singularity of Gaussian measures on function spaces induced by Brownian motion processes with nonstationary increments, Illinois J. Math., 1971, 15, 37–46 | Zbl 0209.19403
[18] Yeh J., Stochastic Processes and the Wiener Integral, Pure Appl. Math. (N.Y.), 13, Marcel Dekker, New York, 1973