Loading [MathJax]/extensions/MathZoom.js
Seshadri positive submanifolds of polarized manifolds
Lucian Bădescu ; Mauro Beltrametti
Open Mathematics, Tome 11 (2013), p. 447-476 / Harvested from The Polish Digital Mathematics Library

Let Y be a submanifold of dimension y of a polarized complex manifold (X, A) of dimension k ≥ 2, with 1 ≤ y ≤ k−1. We define and study two positivity conditions on Y in (X, A), called Seshadri A-bigness and (a stronger one) Seshadri A-ampleness. In this way we get a natural generalization of the theory initiated by Paoletti in [Paoletti R., Seshadri positive curves in a smooth projective 3-fold, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 1996, 6(4), 259–274] (which corresponds to the case (k, y) = (3, 1)) and subsequently generalized and completed in [Bădescu L., Beltrametti M.C., Francia P., Positive curves in polarized manifolds, Manuscripta Math, 1997, 92(3), 369–388] (regarding curves in a polarized manifold of arbitrary dimension). The theory presented here, which is new even if y = k − 1, is motivated by a reasonably large area of examples.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269775
@article{bwmeta1.element.doi-10_2478_s11533-012-0146-z,
     author = {Lucian B\u adescu and Mauro Beltrametti},
     title = {Seshadri positive submanifolds of polarized manifolds},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {447-476},
     zbl = {1276.14022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0146-z}
}
Lucian Bădescu; Mauro Beltrametti. Seshadri positive submanifolds of polarized manifolds. Open Mathematics, Tome 11 (2013) pp. 447-476. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0146-z/

[1] Altman A., Kleiman S., Introduction to Grothendieck Duality Theory, Lecture Notes in Math., 146, Springer, Berlin- New York, 1970 http://dx.doi.org/10.1007/BFb0060933[Crossref] | Zbl 0215.37201

[2] Bădescu L., Infinitesimal deformations of negative weights and hyperplane sections, In: Algebraic Geometry, L’Aquila, May 30–June 4, 1988, Lecture Notes in Math., 1417, Springer, Berlin, 1990, 1–22

[3] Bădescu L., Algebraic Surfaces, Universitext, Springer, New York, 2001

[4] Bădescu L., Projective Geometry and Formal Geometry, IMPAN Monogr. Mat. (N.S.), 65, Birkhäuser, Basel, 2004

[5] Bădescu L., Beltrametti M.C., Francia P., Positive curves in polarized manifolds, Manuscripta Math, 1997, 92(3), 369–388 http://dx.doi.org/10.1007/BF02678200[Crossref] | Zbl 0899.14009

[6] Bădescu L., Valla G., Grothendieck-Lefschetz theory, set-theoretic complete intersections and rational normal scrolls, J. Algebra, 2010, 324(7), 1636–1655 http://dx.doi.org/10.1016/j.jalgebra.2010.05.034[WoS][Crossref] | Zbl 1211.14055

[7] Barth W., Hulek K., Peters C.A.M., Van de Ven A., Compact Complex Surfaces, 2nd ed., Ergeb. Math. Grenzgeb., 4, Springer, Berlin, 2004 | Zbl 1036.14016

[8] Beltrametti M.C., Sommese A.J., Remarks on numerically positive and big line bundles, In: Projective Geometry with Applications, Lecture Notes in Pure and Appl. Math., 166, Marcel Dekker, New York, 1994, 9–18 | Zbl 0834.14008

[9] Beltrametti M.C., Sommese A.J., Notes on embeddings of blowups, J. Algebra, 1996, 186(3), 861–871 http://dx.doi.org/10.1006/jabr.1996.0399[Crossref] | Zbl 0881.14007

[10] Bloch S., Gieseker D., The positivity of the Chern classes of an ample vector bundle, Invent. Math., 1971, 12, 112–117 http://dx.doi.org/10.1007/BF01404655[Crossref] | Zbl 0212.53502

[11] Fulton W., Intersection Theory, Ergeb. Math. Grenzgeb., 2, Springer, Berlin, 1984 | Zbl 0541.14005

[12] Fulton W., Hanssen J., A connectedness theorem for proper varieties, with applications to intersections and singularities of mappings, Ann. of Math., 1979, 110(1), 159–166 http://dx.doi.org/10.2307/1971249[Crossref] | Zbl 0389.14002

[13] Fulton W., Lazarsfeld R., On the connectedness of degeneracy loci and special divisors, Acta Math., 1981, 146(3–4), 271–283 http://dx.doi.org/10.1007/BF02392466[Crossref] | Zbl 0469.14018

[14] Fulton W., Lazarsfeld R., Positive polynomials for ample vector bundles, Ann. of Math., 1983, 118(1), 35–60 http://dx.doi.org/10.2307/2006953[Crossref] | Zbl 0537.14009

[15] Griffiths Ph., Harris J., Principles of Algebraic Geometry, Pure and Applied Mathematics, John Wiley & Sons, New York, 1978 | Zbl 0408.14001

[16] Grothendieck A., Éléments de géométrie algébrique II, Inst. Hautes Études Sci. Publ. Math., 1961, 8, 5–222 http://dx.doi.org/10.1007/BF02699291[Crossref]

[17] Grothendieck A., Éléments de géométrie algébrique III (première partie), Inst. Hautes Études Sci. Publ. Math., 1961, 11, 5–167 http://dx.doi.org/10.1007/BF02684273[Crossref]

[18] Grothendieck A., Éléments de géométrie algébrique IV (première partie), Inst. Hautes Études Sci. Publ. Math., 1964, 20, 5–259 http://dx.doi.org/10.1007/BF02684747[Crossref]

[19] Grothendieck A., Revêtements Étales et Groupe Fondamental, I, Lecture Notes in Math., 224, Springer, New York, 1971

[20] Hartshorne R., Ample vector bundles, Inst. Hautes Études Sci. Publ. Math., 1966, 29, 63–94 | Zbl 0173.49003

[21] Hartshorne R., Cohomological dimension of algebraic varieties, Ann. of Math., 1968, 88, 403–450 http://dx.doi.org/10.2307/1970720[Crossref] | Zbl 0169.23302

[22] Hartshorne R., Ample Subvarieties of Algebraic Varieties, Lecture Notes in Math., 156, Springer, Berlin-New York, 1970 http://dx.doi.org/10.1007/BFb0067839[Crossref] | Zbl 0208.48901

[23] Hartshorne R., Algebraic Geometry, Grad. Texts in Math., 52, Springer, New York-Heidelberg, 1977 [Crossref]

[24] Hironaka H., Matsumura H., Formal functions and formal embeddings, J. Math. Soc. Japan, 1986, 20(1–2), 52–82 [Crossref] | Zbl 0157.27701

[25] Kleiman S.L., Ample vector bundles on algebraic surfaces, Proc. Amer. Math. Soc., 1969, 21(3), 673–676 http://dx.doi.org/10.1090/S0002-9939-1969-0251044-7[Crossref] | Zbl 0176.18502

[26] Lazarsfeld R., Some applications of the theory of positive vector bundles, In: Complete Intersections, Acireale, 1983, Lecture Notes in Math., 1092, Springer, 1984, 29–61

[27] Lazarsfeld R., Positivity in Algebraic Geometry, I, Ergeb. Math. Grenzgeb., 48, Springer, Berlin, 2004 http://dx.doi.org/10.1007/978-3-642-18808-4[Crossref]

[28] Lazarsfeld R., Positivity in Algebraic Geometry, II, Ergeb. Math. Grenzgeb., 49, Springer, Berlin, 2004 http://dx.doi.org/10.1007/978-3-642-18808-4[Crossref]

[29] Paoletti R., Seshadri constants, gonality of space curves and restriction of stable bundles, J. Differential Geom., 1994, 40(3), 475–504 | Zbl 0811.14034

[30] Paoletti R., Seshadri positive curves in a smooth projective 3-fold, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 1996, 6(4), 259–274 | Zbl 0874.14018

[31] Singh A.K., Walther U., On the arithmetic rank of certain Segre products, In: Commutative Algebra and Algebraic Geometry, Contemp. Math., 390, American Mathematical Society, Providence, 2005, 147–155 http://dx.doi.org/10.1090/conm/390/07301[Crossref]

[32] Sommese A.J., Submanifolds of Abelian varieties, Math. Ann., 1978, 233(3), 229–256 http://dx.doi.org/10.1007/BF01405353[Crossref] | Zbl 0381.14007

[33] Speiser R., Cohomological dimension and Abelian varieties, Amer. J. Math., 1973, 95, 1–34 http://dx.doi.org/10.2307/2373641[Crossref]

[34] Verdi L., Esempi di superficie e curve intersezioni complete insiemistiche, Boll. Un. Mat. Ital. A, 1986, 5(1), 47–53