Fixed points for cyclic orbital generalized contractions on complete metric spaces
Erdal Karapınar ; Salvador Romaguera ; Kenan Taş
Open Mathematics, Tome 11 (2013), p. 552-560 / Harvested from The Polish Digital Mathematics Library

We prove a fixed point theorem for cyclic orbital generalized contractions on complete metric spaces from which we deduce, among other results, generalized cyclic versions of the celebrated Boyd and Wong fixed point theorem, and Matkowski fixed point theorem. This is done by adapting to the cyclic framework a condition of Meir-Keeler type discussed in [Jachymski J., Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal. Appl., 1995, 194(1), 293–303]. Our results generalize some theorems of Kirk, Srinavasan and Veeramani, and of Karpagam and Agrawal.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269285
@article{bwmeta1.element.doi-10_2478_s11533-012-0145-0,
     author = {Erdal Karap\i nar and Salvador Romaguera and Kenan Ta\c s},
     title = {Fixed points for cyclic orbital generalized contractions on complete metric spaces},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {552-560},
     zbl = {1281.54028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0145-0}
}
Erdal Karapınar; Salvador Romaguera; Kenan Taş. Fixed points for cyclic orbital generalized contractions on complete metric spaces. Open Mathematics, Tome 11 (2013) pp. 552-560. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0145-0/

[1] Al-Thagafi M.A., Shahzad N., Convergence and existence results for best proximity points, Nonlinear Anal., 2009, 70(10), 3665–3671 http://dx.doi.org/10.1016/j.na.2008.07.022[WoS][Crossref] | Zbl 1197.47067

[2] Anuradha J., Veeramani P., Proximal pointwise contraction, Topology Appl., 2009, 156(18), 2942–2948 http://dx.doi.org/10.1016/j.topol.2009.01.017[Crossref] | Zbl 1180.47035

[3] Boyd D.W., Wong J.S.W., On nonlinear contractions, Proc. Amer. Math. Soc., 1969, 20, 458–464 http://dx.doi.org/10.1090/S0002-9939-1969-0239559-9[Crossref] | Zbl 0175.44903

[4] Derafshpour M., Rezapour Sh., Shahzad N., Best proximity point of cyclic φ-contractions in ordered metric spaces, Topol. Methods Nonlinear Anal., 2011, 37(1), 193–202 | Zbl 1227.54046

[5] Di Bari C., Suzuki T., Vetro C., Best proximity points for cyclic Meir-Keeler contractions, Nonlinear Anal., 2008, 69(11), 3790–3794 http://dx.doi.org/10.1016/j.na.2007.10.014[WoS][Crossref] | Zbl 1169.54021

[6] Eldred A.A., Veeramani P., Existence and convergence of best proximity points, J. Math. Anal. Appl., 2006, 323(2), 1001–1006 http://dx.doi.org/10.1016/j.jmaa.2005.10.081[Crossref] | Zbl 1105.54021

[7] Jachymski J., Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal. Appl., 1995, 194(1), 293–303 http://dx.doi.org/10.1006/jmaa.1995.1299[Crossref] | Zbl 0834.54025

[8] Jachymski J.R., Equivalence of some contractivity properties over metrical structures, Proc. Amer. Math. Soc., 1997, 125(8), 2327–2335 http://dx.doi.org/10.1090/S0002-9939-97-03853-7[Crossref] | Zbl 0887.47039

[9] Karapınar E., Fixed point theory for cyclic weak ϕ-contraction, Appl. Math. Lett., 2011, 24(6), 822–825 http://dx.doi.org/10.1016/j.aml.2010.12.016[WoS][Crossref]

[10] Karpagam S., Agrawal S., Best proximity point theorems for cyclic orbital Meir-Keeler contraction maps, Nonlinear Anal., 2011, 74(4), 1040–1046 http://dx.doi.org/10.1016/j.na.2010.07.026[Crossref]

[11] Kirk W.A., Srinavasan P.S., Veeramani P., Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, 2003, 4(1), 79–89 | Zbl 1052.54032

[12] Kosuru G.S.R., Veeramani P., Cyclic contractions and best proximity pair theorems, preprint available at http://arxiv.org/abs/1012.1434 | Zbl 1237.54052

[13] Matkowski J., Integrable Solutions of Functional Equations, Dissertationes Math. (Rozprawy Mat.), 127, Polish Academy of Sciences, Warsaw, 1975

[14] Meir A., Keeler E., A theorem on contraction mappings, J. Math. Anal. Appl., 1969, 28, 326–329 http://dx.doi.org/10.1016/0022-247X(69)90031-6[Crossref]

[15] Păcurar M., Rus I.A., Fixed point theory for cyclic φ-contractions, Nonlinear Anal., 2010, 72(3–4), 1181–1187 http://dx.doi.org/10.1016/j.na.2009.08.002[Crossref]

[16] Petruşel G., Cyclic representations and periodic points, Studia Univ. Babeş-Bolyai Math., 2005, 50(3), 107–112

[17] Rus I.A., Cyclic representations and fixed points, Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity, 2005, 3, 171–178