We prove that the Ellentuck, Hechler and dual Ellentuck topologies are perfect isomorphic to one another. This shows that the structure of perfect sets in all these spaces is the same. We prove this by finding homeomorphic embeddings of one space into a perfect subset of another. We prove also that the space corresponding to eventually different forcing cannot contain a perfect subset homeomorphic to any of the spaces above.
@article{bwmeta1.element.doi-10_2478_s11533-012-0142-3, author = {Andrzej Nowik and Patrick Reardon}, title = {On the structure of perfect sets in various topologies associated with tree forcings}, journal = {Open Mathematics}, volume = {11}, year = {2013}, pages = {509-518}, zbl = {1271.03068}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0142-3} }
Andrzej Nowik; Patrick Reardon. On the structure of perfect sets in various topologies associated with tree forcings. Open Mathematics, Tome 11 (2013) pp. 509-518. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0142-3/
[1] Balcerzak M., Rosłanowski A., Coinitial families of perfect sets, J. Appl. Anal., 1995, 1(2), 181–204 http://dx.doi.org/10.1515/JAA.1995.181[Crossref] | Zbl 1295.28001
[2] Carlson T.J., Simpson S.G., A dual form of Ramsey’s theorem, Adv. in Math., 1984, 53(3), 265–290 http://dx.doi.org/10.1016/0001-8708(84)90026-4[Crossref]
[3] van Douwen E.K., The Pixley-Roy topology on spaces of subsets, In: Set-Theoretic Topology, Athens, Ohio, 1975–1976, Academic Press, New York-London, 1977, 111–134
[4] Halbeisen L., Symmetries between two Ramsey properties, Arch. Math. Logic, 1998, 37(4), 241–260 http://dx.doi.org/10.1007/s001530050096[Crossref] | Zbl 0937.03057
[5] Łabędzki G., A topology generated by eventually different functions, Acta Univ. Carolin. Math. Phys., 1996, 37(2), 37–53 | Zbl 0883.03033
[6] Łabędzki G., Repický M., Hechler reals, J. Symbolic Logic, 1995, 60(2), 444–458 http://dx.doi.org/10.2307/2275841[Crossref] | Zbl 0832.03025
[7] Nowik A., Reardon P., A dichotomy theorem for the Ellentuck topology, Real Anal. Exchange, 2003/04, 29(2), 531–542 | Zbl 1065.03029
[8] Płotka K., Recław I., Finitely continuous Hamel functions, Real Anal. Exchange, 2004/05, 30(2), 867–870 | Zbl 1107.26006
[9] Popov V., On the subspaces of exp X, In: Topology, Vol. 2, Budapest, August 7–11, 1978, Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam-New York, 1980, 977–984
[10] Reardon P., Ramsey, Lebesgue, and Marczewski sets and the Baire property, Fund. Math., 1996, 149(3), 191–203