The Carathéodory topology for multiply connected domains I
Mark Comerford
Open Mathematics, Tome 11 (2013), p. 322-340 / Harvested from The Polish Digital Mathematics Library

We consider the convergence of pointed multiply connected domains in the Carathéodory topology. Behaviour in the limit is largely determined by the properties of the simple closed hyperbolic geodesics which separate components of the complement. Of particular importance are those whose hyperbolic length is as short as possible which we call meridians of the domain. We prove continuity results on convergence of such geodesics for sequences of pointed hyperbolic domains which converge in the Carathéodory topology to another pointed hyperbolic domain. Using these we describe an equivalent condition to Carathéodory convergence which is formulated in terms of Riemann mappings to standard slit domains.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269062
@article{bwmeta1.element.doi-10_2478_s11533-012-0136-1,
     author = {Mark Comerford},
     title = {The Carath\'eodory topology for multiply connected domains I},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {322-340},
     zbl = {1282.30017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0136-1}
}
Mark Comerford. The Carathéodory topology for multiply connected domains I. Open Mathematics, Tome 11 (2013) pp. 322-340. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0136-1/

[1] Ahlfors L.V., Complex Analysis, 3rd ed., Internat. Ser. Pure Appl. Math., McGraw-Hill, New York, 1978

[2] Beardon A.F., Iteration of Rational Functions, Grad. Texts in Math., 132, Springer, New York, 1991 http://dx.doi.org/10.1007/978-1-4612-4422-6

[3] Carathéodory C., Conformal Representation, 2nd ed., Cambridge Tracts in Mathematics and Mathematical Physics, 28, Cambridge University Press, Cambridge, 1952

[4] Carleson L., Gamelin T.W., Complex Dynamics, Universitext Tracts Math., Springer, New York, 1993 http://dx.doi.org/10.1007/978-1-4612-4364-9 | Zbl 0782.30022

[5] Comerford M., Short separating geodesics for multiply connected domains, Cent. Eur. J. Math., 2011, 9(5), 984–996 http://dx.doi.org/10.2478/s11533-011-0065-4 | Zbl 1277.30015

[6] Comerford M., A straightening theorem for non-autonomous iteration, Comm. Appl. Nonlinear Anal., 2012, 19(2), 1–23 | Zbl 1259.37030

[7] Comerford M., The Carathéodory topology for multiply connected domains II, Cent. Eur. J. Math. (in press), preprint available at http://arxiv.org/abs/1103.2537

[8] Duren P.L., Univalent Functions, Grundlehren Math. Wiss., 259, Springer, New York, 1983

[9] Epstein A.L., Towers of Finite Type Complex Analytic Maps, PhD thesis, CUNY, New York, 1993

[10] Hejhal D.A., Universal covering maps for variable regions, Math. Z., 1974, 137, 7–20 http://dx.doi.org/10.1007/BF01213931 | Zbl 0316.30009

[11] Hubbard J.H., Teichmüller Theory and Applications to Geometry, Topology, and Dynamics. I, Matrix Editions, Ithaca, 2006 | Zbl 1102.30001

[12] Keen L., Lakic N., Hyperbolic Geometry from a Local Viewpoint, London Math. Soc. Stud. Texts, 68, Cambridge University Press, Cambridge, 2007 http://dx.doi.org/10.1017/CBO9780511618789 | Zbl 1190.30001

[13] McMullen C.T., Complex Dynamics and Renormalization, Ann. of Math. Stud., 135, Princeton University Press, Princeton, 1994 | Zbl 0822.30002