The visibility parameter for words and permutations
Ligia Cristea ; Helmut Prodinger
Open Mathematics, Tome 11 (2013), p. 283-295 / Harvested from The Polish Digital Mathematics Library

We investigate the visibility parameter, i.e., the number of visible pairs, first for words over a finite alphabet, then for permutations of the finite set {1, 2, …, n}, and finally for words over an infinite alphabet whose letters occur with geometric probabilities. The results obtained for permutations correct the formula for the expectation obtained in a recent paper by Gutin et al. [Gutin G., Mansour T., Severini S., A characterization of horizontal visibility graphs and combinatorics on words, Phys. A, 2011, 390 (12), 2421–2428], and for words over a finite alphabet the formula obtained in the present paper for the expectation is more precise than that obtained in the cited paper. More importantly, we also compute the variance for each case.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269708
@article{bwmeta1.element.doi-10_2478_s11533-012-0135-2,
     author = {Ligia Cristea and Helmut Prodinger},
     title = {The visibility parameter for words and permutations},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {283-295},
     zbl = {1258.05001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0135-2}
}
Ligia Cristea; Helmut Prodinger. The visibility parameter for words and permutations. Open Mathematics, Tome 11 (2013) pp. 283-295. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0135-2/

[1] Flajolet Ph., Martin G.N., Probabilistic counting algorithms for data base applications, J. Comput. System Sci., 1985, 31(2), 182–209 http://dx.doi.org/10.1016/0022-0000(85)90041-8 | Zbl 0583.68059

[2] Graham R.L., Knuth D.E., Patashnik O., Concrete Mathematics, 2nd ed., Addison-Wesley, Reading, 1994

[3] Gutin G., Mansour T., Severini S., A characterization of horizontal visibility graphs and combinatorics on words, Phys. A, 2011, 390(12), 2421–2428 http://dx.doi.org/10.1016/j.physa.2011.02.031

[4] Prodinger H., Combinatorics of geometrically distributed random variables: left-to-right maxima, In: 5th Conference on Formal Power Series and Algebraic Combinatorics, Florence, June 21–25, 1993, Discrete Math., Elsevier, Amsterdam, 1996, 153(1–3), 253–270

[5] Prodinger H., A q-analogue of the path length of binary search trees, Algorithmica, 2001, 31(3), 433–441 http://dx.doi.org/10.1007/s00453-001-0058-y | Zbl 0989.68035

[6] Prodinger H., Combinatorics of geometrically distributed random variables: inversions and a parameter of Knuth, Ann. Comb., 2001, 5(2), 241–250 http://dx.doi.org/10.1007/s00026-001-8010-z | Zbl 0994.05012

[7] Pugh W., Skip lists: a probabilistic alternative to balanced trees, Communications of the ACM, 1990, 33(6), 668–676 http://dx.doi.org/10.1145/78973.78977