Mean values connected with the Dedekind zeta-function of a non-normal cubic field
Guangshi Lü
Open Mathematics, Tome 11 (2013), p. 274-282 / Harvested from The Polish Digital Mathematics Library

After Landau’s famous work, many authors contributed to some mean values connected with the Dedekind zetafunction. In this paper, we are interested in the integral power sums of the coefficients of the Dedekind zeta function of a non-normal cubic extension K 3/ℚ, i.e. Sl,K3(x)=mxMl(m) , where M(m) denotes the number of integral ideals of the field K 3 of norm m and l ∈ ℕ. We improve the previous results for S2,K3(x) and S3,K3(x) .

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269117
@article{bwmeta1.element.doi-10_2478_s11533-012-0133-4,
     author = {Guangshi L\"u},
     title = {Mean values connected with the Dedekind zeta-function of a non-normal cubic field},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {274-282},
     zbl = {1292.11108},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0133-4}
}
Guangshi Lü. Mean values connected with the Dedekind zeta-function of a non-normal cubic field. Open Mathematics, Tome 11 (2013) pp. 274-282. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0133-4/

[1] Cassels J.W.S., Fröhlich A. (Eds.), Algebraic Number Theory, Brighton, September 1–17, 1965, Academic Press/Thompson Book, London/Washington, 1967

[2] Chandrasekharan K., Good A., On the number of integral ideals in Galois extensions, Monatsh. Math., 1983, 95(2), 99–109 http://dx.doi.org/10.1007/BF01323653 | Zbl 0498.12009

[3] Chandrasekharan K., Narasimhan R., The approximate functional equation for a class of zeta-functions, Math. Ann., 1963, 152, 30–64 http://dx.doi.org/10.1007/BF01343729 | Zbl 0116.27001

[4] Deligne P., Serre J.-P., Formes modulaires de poids 1, Ann. Sci. École Norm. Sup., 1974, 7, 507–530 | Zbl 0321.10026

[5] Fomenko O.M., Mean values associated with the Dedekind zeta function, J. Math. Sci. (N.Y.), 2008, 150(3), 2115–2122 http://dx.doi.org/10.1007/s10958-008-0126-9

[6] Gelbart S., Jacquet H., A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. École Norm. Sup., 1978, 11(4), 471–542 | Zbl 0406.10022

[7] Good A., The square mean of Dirichlet series associated with cusp forms, Mathematika, 1982, 29(2), 278–295 http://dx.doi.org/10.1112/S0025579300012377 | Zbl 0497.10016

[8] Huxley M.N., Watt N., The number of ideals in a quadratic field II, Israel J. Math., 2000, 120(A), 125–153 | Zbl 0977.11049

[9] Ivic A., Exponent pairs and the zeta function of Riemann, Studia Sci. Math. Hungar., 1980, 15(1–3), 157–181 | Zbl 0455.10025

[10] Iwaniec H., Kowalski E., Analytic Number Theory, Amer. Math. Soc. Colloq. Publ., 53, American Mathematical Society, Providence, 2004 | Zbl 1059.11001

[11] Jutila M., Lectures on a Method in the Theory of Exponential Sums, Tata Inst. Fund. Res. Lectures on Math. and Phys., 80, Springer, Berlin, 1987

[12] Kim H.H., Functoriality for the exterior square of GL4 and symmetric fourth of GL2, J. Amer. Math. Soc., 2003, 16(1), 139–183 http://dx.doi.org/10.1090/S0894-0347-02-00410-1

[13] Kim H.H., An example of non-normal quintic automorphic induction and modularity of symmetric powers of cusp forms of icosahedral type, Invent. Math., 2004, 156(3), 495–502 http://dx.doi.org/10.1007/s00222-003-0340-5 | Zbl 1086.11024

[14] Kim H.H., Functoriality and number of solutions of congruences, Acta Arith., 2007, 128(3), 235–243 http://dx.doi.org/10.4064/aa128-3-4 | Zbl 1135.11051

[15] Kim H.H., Shahidi F., Symmetric cube L-functions for GL2 are entire, Ann. of Math., 1999, 150(2), 645–662 http://dx.doi.org/10.2307/121091 | Zbl 0957.11026

[16] Kim H.H., Shahidi F., Cuspidality of symmetric power with applications, Duke Math. J., 2002, 112(1), 177–197 http://dx.doi.org/10.1215/S0012-9074-02-11215-0 | Zbl 1074.11027

[17] Kim H.H., Shahidi F., Functorial products for GL2×GL3 and the symmetric cube for GL2, Ann. of Math., 2002, 155(3), 837–893 http://dx.doi.org/10.2307/3062134

[18] Landau E., Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale, Chelsea, New York, 1949 | Zbl 46.0242.02

[19] Li X., Bounds for GL(3)×GL(2) L-functions and GL(3) L-functions, Ann. of Math., 2011, 173(1), 301–336 http://dx.doi.org/10.4007/annals.2011.173.1.8 | Zbl 1320.11046

[20] Müller W., On the distribution of ideals in cubic number fields, Monatsh. Math., 1988, 106(3), 211–219 http://dx.doi.org/10.1007/BF01318682 | Zbl 0669.10068

[21] Nowak W.G., On the distribution of integer ideals in algebraic number fields, Math. Nachr., 1993, 161, 59–74 http://dx.doi.org/10.1002/mana.19931610107 | Zbl 0803.11061

[22] Pan C.D., Pan C.B., Fundamentals of Analytic Number Theory, Science Press, Beijing, 1991 (in Chinese)