On the irreducibility of Hilbert scheme of surfaces of minimal degree
Fedor Bogomolov ; Viktor Kulikov
Open Mathematics, Tome 11 (2013), p. 254-263 / Harvested from The Polish Digital Mathematics Library

The article contains a new proof that the Hilbert scheme of irreducible surfaces of degree m in ℙm+1 is irreducible except m = 4. In the case m = 4 the Hilbert scheme consists of two irreducible components explicitly described in the article. The main idea of our approach is to use the proof of Chisini conjecture [Kulikov Vik.S., On Chisini’s conjecture II, Izv. Math., 2008, 72(5), 901–913 (in Russian)] for coverings of projective plane branched in a special class of rational curves.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:268943
@article{bwmeta1.element.doi-10_2478_s11533-012-0130-7,
     author = {Fedor Bogomolov and Viktor Kulikov},
     title = {On the irreducibility of Hilbert scheme of surfaces of minimal degree},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {254-263},
     zbl = {1262.14004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0130-7}
}
Fedor Bogomolov; Viktor Kulikov. On the irreducibility of Hilbert scheme of surfaces of minimal degree. Open Mathematics, Tome 11 (2013) pp. 254-263. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0130-7/

[1] Ciliberto C., Flamini F., On the branch curve of a general projection of a surface to a plane, Trans. Amer. Math. Soc., 2011, 363(7), 3457–3471 http://dx.doi.org/10.1090/S0002-9947-2011-05401-2 | Zbl 1227.14022

[2] Dolgachev I.V., Iskovskikh V.A., Finite subgroups of the plane Cremona group, In: Algebra, Arithmetic, and Geometry: in Honor of Yu. I. Manin, I, Progr. Math., 269, Birkhäuser, Boston, 2009, 443–548 | Zbl 1219.14015

[3] Griffiths P., Harris J., Principles of Algebraic Geometry, Pure Appl. Math. (N.Y.), John Wiley & Sons, New York, 1978 | Zbl 0408.14001

[4] Eisenbud D., Harris J., On varieties of minimal degree (a centennial account), In: Algebraic Geometry I, Brunswick, July 8–26, 1985, Proc. Sympos. Pure Math., 46(1), American Mathematical Society, Providence, 1987, 3–13

[5] Kulikov Vik.S., On Chisini’s conjecture, Izv. Math., 63(6), 1999, 1139–1170 (in Russian) http://dx.doi.org/10.1070/IM1999v063n06ABEH000267 | Zbl 0962.14005

[6] Kulikov Vik.S., On Chisini’s conjecture II, Izv. Math., 2008, 72(5), 901–913 (in Russian) http://dx.doi.org/10.1070/IM2008v072n05ABEH002423 | Zbl 1153.14012

[7] Kulikov Vik.S., A remark on classical Pluecker’s formulae, preprint available at http://arxiv.org/abs/1101.5042

[8] Kulikov V.S., Kulikov Vik.S., On complete degenerations of surfaces with ordinary singularities in ℙ3, Sb. Math., 2010, 201(1), 129–158 http://dx.doi.org/10.1070/SM2010v201n01ABEH004068

[9] Reid M., Chapters on algebraic surfaces, In: Complex Algebraic Geometry, Park City, 1993, IAS/Park City Math. Ser., 3, American Mathematical Society, Providence, 1997

[10] Semple J.G., Roth L., Introduction to Algebraic Geometry, Oxford, Clarendon Press, 1949 | Zbl 0041.27903

[11] Shafarevich I.R., Averbukh B.G., Vainberg Yu.R., Zhizhchenko A.B., Manin Yu.I., Moishezon B.G., Tyurina G.N., Tyurin A.N., Algebraic Surfaces, Trudy Mat. Inst. Steklov., 75, Nauka, Moscow, 1965 (in Russian)