We study the behaviour of weak solutions (as well as their gradients) of boundary value problems for quasi-linear elliptic divergence equations in domains extending to infinity along a cone.
@article{bwmeta1.element.doi-10_2478_s11533-012-0127-2, author = {Mikhail Borsuk and Damian Wi\'sniewski}, title = {Boundary value problems for quasi-linear elliptic second order equations in unbounded cone-like domains}, journal = {Open Mathematics}, volume = {10}, year = {2012}, pages = {2051-2072}, zbl = {1266.35035}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0127-2} }
Mikhail Borsuk; Damian Wiśniewski. Boundary value problems for quasi-linear elliptic second order equations in unbounded cone-like domains. Open Mathematics, Tome 10 (2012) pp. 2051-2072. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0127-2/
[1] Borsuk M.V., A priori estimates and solvability of second order quasilinear elliptic equations in a composite domain with nonlinear boundary condition and conjugacy condition, Trudy Mat. Inst. Steklov., 1968, 103, 15–50 (in Russian) | Zbl 0202.11502
[2] Borsuk M., Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains, Front. Math., Birkhäuser/Springer, Basel, 2010
[3] Borsuk M., Kondratiev V., Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains, North-Holland Math. Library, 69, Elsevier, Amsterdam, 2006 | Zbl 1246.35004
[4] Furusho Ya., Existence of global positive solutions of quasilinear elliptic equations in unbounded domains, Funkcial. Ekvac., 1989, 32(2), 227–242 | Zbl 0694.35065
[5] Gel’fand I.M., Shilov G.E., Generalized Functions I, Academic Press, New York, 1964
[6] Kondratiev V., Liskevich V., Moroz V., Positive solutions to superlinear second-order divergence type elliptic equations in cone-like domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2005, 22(1), 25–43 http://dx.doi.org/10.1016/j.anihpc.2004.03.003[Crossref] | Zbl 1130.35053
[7] Lieberman G.M., Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 1988, 12(11), 1203–1219 http://dx.doi.org/10.1016/0362-546X(88)90053-3[Crossref]
[8] Noussair E.S., Swanson C.A., Decaying entire solutions of quasilinear elliptic equations, Funkcial. Ekvac., 1988, 31(3), 415–438 | Zbl 0684.35036
[9] Ouassarah A.A., Hajjaj A., Existence of solutions for quasilinear elliptic boundary value problems in unbounded domains, Bull. Belg. Math. Soc. Simon Stevin, 1996, 3(2), 215–223 | Zbl 0848.35045
[10] Pao C.V., Nonlinear elliptic boundary value problems in unbounded domains, Nonlinear Anal., 1992, 18(8), 759–774 http://dx.doi.org/10.1016/0362-546X(92)90170-J[Crossref]
[11] Rivkind V.Ja., Uralćeva N.N., Classical solvability and linear schemes for the approximate solution of diffraction problems for quasilinear equations of parabolic and of elliptic type, In: Problems of Mathematical Analysis III, Integral and Differential Equations, Leningrad University, Leningrad, 1972, 69–111 (in Russian)
[12] Wisniewski D., Boundary value problems for a second-order elliptic equation in unbounded domains, Ann. Univ. Paedagog. Crac. Stud. Math., 2010, 9, 87–122 | Zbl 1222.35077