Following S. Bauer and M. Furuta we investigate finite dimensional approximations of a monopole map in the case b 1 = 0. We define a certain topological degree which is exactly equal to the Seiberg-Witten invariant. Using homotopy invariance of the topological degree a simple proof of the wall crossing formula is derived.
@article{bwmeta1.element.doi-10_2478_s11533-012-0125-4, author = {Maciej Starostka}, title = {Seiberg-Witten invariants, the topological degree and wall crossing formula}, journal = {Open Mathematics}, volume = {10}, year = {2012}, pages = {2129-2137}, zbl = {1275.57040}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0125-4} }
Maciej Starostka. Seiberg-Witten invariants, the topological degree and wall crossing formula. Open Mathematics, Tome 10 (2012) pp. 2129-2137. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0125-4/
[1] Bauer S., Furuta M., A stable cohomotopy refinement of Seiberg-Witten invariants I, Invent. Math., 2004, 155(1), 1–19 http://dx.doi.org/10.1007/s00222-003-0288-5[Crossref] | Zbl 1050.57024
[2] Bott R., Tu L.W., Differential Forms in Algebraic Topology, Grad. Texts in Math., 82, Springer, New York-Berlin, 1982 | Zbl 0496.55001
[3] tom Dieck T., Transformation Groups, de Gruyter Stud. Math., 8, Walter de Gruyter, Berlin, 1987 http://dx.doi.org/10.1515/9783110858372[Crossref]
[4] Salamon D.A., Spin Geometry and Seiberg-Witten Invariants, unpublished manuscript
[5] Taubes C.H., Differential Geometry, Oxf. Grad. Texts Math., 23, Oxford University Press, New York, 2011