Filippov Lemma for certain second order differential inclusions
Grzegorz Bartuzel ; Andrzej Fryszkowski
Open Mathematics, Tome 10 (2012), p. 1944-1952 / Harvested from The Polish Digital Mathematics Library

In the paper we give an analogue of the Filippov Lemma for the second order differential inclusions with the initial conditions y(0) = 0, y′(0) = 0, where the matrix A ∈ ℝd×d and multifunction is Lipschitz continuous in y with a t-independent constant l. The main result is the following: Assume that F is measurable in t and integrably bounded. Let y 0 ∈ W 2,1 be an arbitrary function fulfilling the above initial conditions and such that where p 0 ∈ L 1[0, 1]. Then there exists a solution y ∈ W 2,1 to the above differential inclusions such that a.e. in [0, 1], .

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269058
@article{bwmeta1.element.doi-10_2478_s11533-012-0119-2,
     author = {Grzegorz Bartuzel and Andrzej Fryszkowski},
     title = {Filippov Lemma for certain second order differential inclusions},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {1944-1952},
     zbl = {1268.34044},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0119-2}
}
Grzegorz Bartuzel; Andrzej Fryszkowski. Filippov Lemma for certain second order differential inclusions. Open Mathematics, Tome 10 (2012) pp. 1944-1952. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0119-2/

[1] Aubin J.P., Cellina A., Differential Inclusions, Grundlehren Math. Wiss., 264, Springer, Berlin, 1984 http://dx.doi.org/10.1007/978-3-642-69512-4[Crossref]

[2] Aubin J.-P., Frankowska H., Set-Valued Analysis, Systems Control Found. Appl., 2, Birkhäuser, Boston, 1990 | Zbl 0713.49021

[3] Bartuzel G., Fryszkowski A., A topological property of the solution set to the Sturm-Liouville differential inclusions, Demonstratio Math., 1995, 28(4), 903–914 | Zbl 0886.47026

[4] Bartuzel G., Fryszkowski A., Stability of principal eigenvalue of the Schrödinger type problem for differential inclusions, Topol. Methods Nonlinear Anal., 2000, 16(1), 181–194 | Zbl 0980.34080

[5] Bartuzel G., Fryszkowski A., A class of retracts in L p with some applications to differential inclusion, Discuss. Math. Differ. Incl. Control Optim., 2001, 22(2), 213–224 http://dx.doi.org/10.7151/dmdico.1038[Crossref] | Zbl 1041.35095

[6] Bressan A., Cellina A., Fryszkowski A., A class of absolute retracts in spaces of integrable functions, Proc. Amer. Math. Soc., 1991, 112(2), 413–418 http://dx.doi.org/10.1090/S0002-9939-1991-1045587-8[Crossref] | Zbl 0747.34014

[7] Cellina A., On the set of solutions to Lipschitzian differential inclusions, Differential Integral Equations, 1988, 1(4), 495–500 | Zbl 0723.34009

[8] Cellina A., Ornelas A., Representation of the attainable set for Lipschitzian differential inclusions, Rocky Mountain J. Math., 1992, 22(1), 117–124 http://dx.doi.org/10.1216/rmjm/1181072798[Crossref] | Zbl 0752.34012

[9] Cernea A., On the existence of solutions for a higher order differential inclusion without convexity, Electron. J. Qual. Theory Differ. Equ., 2007, #8 | Zbl 1123.34046

[10] Colombo R.M., Fryszkowski A., Rzezuchowski T., Staicu V., Continuous selections of solution sets of Lipschitzean differential inclusions, Funkcial. Ekvac., 1991, 34(2), 321–330 | Zbl 0749.34008

[11] Filippov A.F., Classical solutions of differential equations with multi-valued right-hand side, SIAM J. Control., 1967, 5, 609–621 http://dx.doi.org/10.1137/0305040[Crossref]

[12] Fryszkowski A., Fixed Point Theory for Decomposable Sets, Topol. Fixed Point Theory Appl., 2, Kluwer, Dordrecht, 2004 | Zbl 1086.47004

[13] Fryszkowski A., Rzezuchowski T., Continuous version of Filippov-Wazewski relaxation theorem, J. Differential Equations, 1991, 94(2), 254–265 http://dx.doi.org/10.1016/0022-0396(91)90092-N[Crossref]

[14] Hartman Ph., Ordinary Differential Equations, Birkhäuser, Boston, 1982

[15] Hu Sh., Papageorgiou N.S., Handbook of Multivalued Analysis I, Math. Appl., 419, Kluwer, Dordrecht, 1997 | Zbl 0887.47001

[16] Naselli Ricceri O., A-fixed points of multi-valued contractions, J. Math. Anal. Appl., 1988, 135(2), 406–418 http://dx.doi.org/10.1016/0022-247X(88)90164-3[Crossref]

[17] Naselli Ricceri O., Ricceri B., Differential inclusions depending on a parameter, Bull. Polish Acad. Sci. Math., 1989, 37(7–12), 665–671 | Zbl 0755.34014

[18] Papageorgiou N.S., Boundary value problems for evolution inclusions, Comment. Math. Univ. Carolin., 1988, 29(2), 355–363 | Zbl 0696.35074

[19] Repovš D., Semenov P.V., Continuous Selections of Multivalued Mappings, Math. Appl., 455, Kluwer, Dordrecht, 1998 | Zbl 0915.54001

[20] Rybinski L.E., A fixed point approach in the study of the solution sets of Lipschitzian functional-differential inclusions, J. Math. Anal. Appl., 1991, 160(1), 24–46 http://dx.doi.org/10.1016/0022-247X(91)90287-A[Crossref]

[21] Tolstonogov A.A., On the structure of the solution set for differential inclusions in a Banach space, Mat. Sb., 1982, 118(160)(1), 3–18 (in Russian) | Zbl 0514.34053