Notes on tiled incompressible tori
Leonid Plachta
Open Mathematics, Tome 10 (2012), p. 2200-2210 / Harvested from The Polish Digital Mathematics Library

Let Θ denote the class of essential tori in a closed braid complement which admit a standard tiling in the sense of Birman and Menasco [Birman J.S., Menasco W.W., Special positions for essential tori in link complements, Topology, 1994, 33(3), 525–556]. Moreover, let R denote the class of thin tiled tori in the sense of Ng [Ng K.Y., Essential tori in link complements, J. Knot Theory Ramifications, 1998, 7(2), 205–216]. We define the subclass B ⊂ Θ of typical tiled tori and show that R ⊂ B. We also describe a method allowing to construct new examples of tiled essential tori T which are outside the class B in the strong sense. In [Kazantsev A., Essential tori in link complements: detecting the satellite structure by monotonic simplification, preprint available at http://arxiv.org/abs/1005.5263], Kazantsev showed that the inclusion R ⊂ Θ is proper by giving the corresponding example of a nonthin tiled torus T. It turns out this torus T is inside the class B. We show that the inclusion B ⊂ Θ is proper. It follows that the tori from the class B do not provide the complete geometric description of the class Θ. The main results of the paper are Theorems 2.1 and 2.2 which give a constructive procedure for obtaining examples of nontypical tiled essential tori.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269717
@article{bwmeta1.element.doi-10_2478_s11533-012-0117-4,
     author = {Leonid Plachta},
     title = {Notes on tiled incompressible tori},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {2200-2210},
     zbl = {1261.57010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0117-4}
}
Leonid Plachta. Notes on tiled incompressible tori. Open Mathematics, Tome 10 (2012) pp. 2200-2210. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0117-4/

[1] Birman J.S., Finkelstein E., Studying surfaces via closed braids, J. Knot Theory Ramifications, 1998, 7(3), 267–334 http://dx.doi.org/10.1142/S0218216598000176[Crossref] | Zbl 0907.57006

[2] Birman J.S., Hirsch M.D., A new algorithm for recognizing the unknot, Geom. Topol., 1998, 2, 175–220 http://dx.doi.org/10.2140/gt.1998.2.175[Crossref] | Zbl 0955.57005

[3] Birman J.S., Menasco W.W., Special positions for essential tori in link complements, Topology, 1994, 33(3), 525–556 http://dx.doi.org/10.1016/0040-9383(94)90027-2[Crossref] | Zbl 0833.57004

[4] Burde G., Zieschang H., Knots, 2nd ed., de Gruyter Stud. Math., 5, Walter de Gruyter, Berlin, 1986

[5] Finkelstein E., Closed incompressible surfaces in closed braid complements, J. Knot Theory Ramifications, 1998, 7(3), 335–379 http://dx.doi.org/10.1142/S0218216598000188[Crossref] | Zbl 0901.57010

[6] Jaco W.H., Shalen P.B., Seifert Fibered Spaces in 3-Manifolds, Mem. Amer. Math. Soc., 21(220), American Mathematical Society, Providence, 1979 | Zbl 0471.57001

[7] Johannson K., Équivalences d’homotopie des variétés de dimension 3, C. R. Acad. Sci. Paris Sér. A-B, 1975, 281(23), A1009–A1010 | Zbl 0313.57003

[8] Kazantsev A., Essential tori in link complements: detecting the satellite structure by monotonic simplification, preprint available at http://arxiv.org/abs/1005.5263 | Zbl 1221.57006

[9] Lozano M.T., Przytycki J.H., Incompressible surfaces in the exterior of a closed 3-braid. I. Surfaces with horizontal boundary components, Math. Proc. Cambridge Philos. Soc., 1985, 98(2), 275–299 http://dx.doi.org/10.1017/S0305004100063465[Crossref] | Zbl 0574.57003

[10] Ng K.Y., Essential tori in link complements, J. Knot Theory Ramifications, 1998, 7(2), 205–216 http://dx.doi.org/10.1142/S0218216598000139[Crossref] | Zbl 0898.57004

[11] Plachta L., Essential tori admitting a standard tiling, Fund. Math., 2006, 189(3), 195–226 http://dx.doi.org/10.4064/fm189-3-1[Crossref] | Zbl 1099.57009