A class of continua that are not attractors of any IFS
Marcin Kulczycki ; Magdalena Nowak
Open Mathematics, Tome 10 (2012), p. 2073-2076 / Harvested from The Polish Digital Mathematics Library

This paper presents a sufficient condition for a continuum in ℝn to be embeddable in ℝn in such a way that its image is not an attractor of any iterated function system. An example of a continuum in ℝ2 that is not an attractor of any weak iterated function system is also given.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269096
@article{bwmeta1.element.doi-10_2478_s11533-012-0108-5,
     author = {Marcin Kulczycki and Magdalena Nowak},
     title = {A class of continua that are not attractors of any IFS},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {2073-2076},
     zbl = {1259.28013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0108-5}
}
Marcin Kulczycki; Magdalena Nowak. A class of continua that are not attractors of any IFS. Open Mathematics, Tome 10 (2012) pp. 2073-2076. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0108-5/

[1] Barnsley M., Fractals Everywhere, Academic Press, Boston, 1988

[2] Edelstein M., On fixed and periodic points under contractive mappings, J. Lond. Math. Soc., 1962, 37, 74–79 http://dx.doi.org/10.1112/jlms/s1-37.1.74[Crossref]

[3] Hata M., On the structure of self-similar sets, Japan J. Appl. Math., 1985, 2(2), 381–414 http://dx.doi.org/10.1007/BF03167083[Crossref] | Zbl 0608.28003

[4] Hutchinson J.E., Fractals and self similarity, Indiana Univ. Math. J., 1981, 30(5), 713–747 http://dx.doi.org/10.1512/iumj.1981.30.30055[Crossref]

[5] Kwiecinski M., A locally connected continuum which is not an IFS attractor, Bull. Pol. Acad. Sci. Math., 1999, 47(2), 127–132 | Zbl 0931.54028

[6] Sanders M.J., Non-attractors of iterated fuction systems, Texas Project NexT Journal, 2003, 1, 1–9

[7] Sanders M.J., An n-cell in ℝn+1 that is not the attractor of any IFS on ℝn+1, Missouri J. Math. Sci., 2009, 21(1), 13–20 | Zbl 1175.37026