This paper presents a sufficient condition for a continuum in ℝn to be embeddable in ℝn in such a way that its image is not an attractor of any iterated function system. An example of a continuum in ℝ2 that is not an attractor of any weak iterated function system is also given.
@article{bwmeta1.element.doi-10_2478_s11533-012-0108-5, author = {Marcin Kulczycki and Magdalena Nowak}, title = {A class of continua that are not attractors of any IFS}, journal = {Open Mathematics}, volume = {10}, year = {2012}, pages = {2073-2076}, zbl = {1259.28013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0108-5} }
Marcin Kulczycki; Magdalena Nowak. A class of continua that are not attractors of any IFS. Open Mathematics, Tome 10 (2012) pp. 2073-2076. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0108-5/
[1] Barnsley M., Fractals Everywhere, Academic Press, Boston, 1988
[2] Edelstein M., On fixed and periodic points under contractive mappings, J. Lond. Math. Soc., 1962, 37, 74–79 http://dx.doi.org/10.1112/jlms/s1-37.1.74[Crossref]
[3] Hata M., On the structure of self-similar sets, Japan J. Appl. Math., 1985, 2(2), 381–414 http://dx.doi.org/10.1007/BF03167083[Crossref] | Zbl 0608.28003
[4] Hutchinson J.E., Fractals and self similarity, Indiana Univ. Math. J., 1981, 30(5), 713–747 http://dx.doi.org/10.1512/iumj.1981.30.30055[Crossref]
[5] Kwiecinski M., A locally connected continuum which is not an IFS attractor, Bull. Pol. Acad. Sci. Math., 1999, 47(2), 127–132 | Zbl 0931.54028
[6] Sanders M.J., Non-attractors of iterated fuction systems, Texas Project NexT Journal, 2003, 1, 1–9
[7] Sanders M.J., An n-cell in ℝn+1 that is not the attractor of any IFS on ℝn+1, Missouri J. Math. Sci., 2009, 21(1), 13–20 | Zbl 1175.37026