Fixed points and iterations of mean-type mappings
Janusz Matkowski
Open Mathematics, Tome 10 (2012), p. 2215-2228 / Harvested from The Polish Digital Mathematics Library

Let (X, d) be a metric space and T: X → X a continuous map. If the sequence (T n)n∈ℕ of iterates of T is pointwise convergent in X, then for any x ∈ X, the limit μT(x)=limnTn(x) is a fixed point of T. The problem of determining the form of µT leads to the invariance equation µT ○ T = µT, which is difficult to solve in general if the set of fixed points of T is not a singleton. We consider this problem assuming that X = I p, where I is a real interval, p ≥ 2 a fixed positive integer and T is the mean-type mapping M =(M 1,...,M p) of I p. In this paper we give the explicit forms of µM for some classes of mean-type mappings. In particular, the classical Pythagorean harmony proportion can be interpreted as an important invariance equality. Some applications are presented. We show that, in general, the mean-type mappings are not non-expansive.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269119
@article{bwmeta1.element.doi-10_2478_s11533-012-0106-7,
     author = {Janusz Matkowski},
     title = {Fixed points and iterations of mean-type mappings},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {2215-2228},
     zbl = {1260.26036},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0106-7}
}
Janusz Matkowski. Fixed points and iterations of mean-type mappings. Open Mathematics, Tome 10 (2012) pp. 2215-2228. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0106-7/

[1] Bajraktarević M., Sur une équation fonctionnelle aux valeurs moyennes, Glasnik Mat.-Fiz. Astronom. Društvo Mat. Fiz. Hrvatske. Ser. II, 1958, 13, 243–248 | Zbl 0084.34401

[2] Borwein J.M., Borwein P.B., Pi and the AGM, Canad. Math. Soc. Ser. Monogr. Adv. Texts, 4, John Wiley & Sons, New York, 1998

[3] Bullen P.S., Handbook of Means and their Inequalities, Math. Appl., 560, Kluwer, Dordrecht-Boston-London, 2003 | Zbl 1035.26024

[4] Gauss C.F., Bestimmung der Anziehung eines Elliptischen Ringen, Ostwalds Klassiker Exakt. Wiss., 225, Akademische Verlagsgesellschaft, Leipzig, 1927

[5] Matkowski J., Iterations of mean-type mappings and invariant means, Ann. Math. Sil., 1999, 13, 211–226 | Zbl 0954.26015

[6] Matkowski J., Invariant and complementary quasi-arithmetic means, Aequationes Math., 1999, 57(1), 87–107 http://dx.doi.org/10.1007/s000100050072[Crossref] | Zbl 0930.26014

[7] Matkowski J., Lagrangian mean-type mappings for which the arithmetic mean is invariant, J. Math. Anal. Appl., 2005, 309(1), 15–24 http://dx.doi.org/10.1016/j.jmaa.2004.10.033[Crossref]

[8] Matkowski J., Iterations of the mean-type mappings, In: Iteration theory, Yalta, September 7–13, 2008, Grazer Math. Ber., 354, Karl-Franzens-Universität Graz, Graz, 2009, 158–179 | Zbl 1220.26003

[9] Matkowski J., Invariance of a quasi-arithmetic mean with respect to a system of generalized Bajraktarević means, Appl. Math. Lett., 2012, 25(11), 1651–1655 http://dx.doi.org/10.1016/j.aml.2012.01.030[WoS][Crossref] | Zbl 1268.26035

[10] Ng C.T., Functions generating Schur-convex sums, In: General Inequalities, 5, Oberwolfach, May 4–10, 1986, Internat. Schriftenreihe Numer. Math., 80, Birkhäuser, Basel, 1987, 433–438 http://dx.doi.org/10.1007/978-3-0348-7192-1_35[Crossref]