Cardinality of height function’s range in case of maximally many rectangular islands - computed by cuts
Eszter Horváth ; Branimir Šešelja ; Andreja Tepavčević
Open Mathematics, Tome 11 (2013), p. 296-307 / Harvested from The Polish Digital Mathematics Library

We deal with rectangular m×n boards of square cells, using the cut technics of the height function. We investigate combinatorial properties of this function, and in particular we give lower and upper bounds for the number of essentially different cuts. This number turns out to be the cardinality of the height function’s range, in case the height function has maximally many rectangular islands.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269807
@article{bwmeta1.element.doi-10_2478_s11533-012-0103-x,
     author = {Eszter Horv\'ath and Branimir \v Se\v selja and Andreja Tepav\v cevi\'c},
     title = {Cardinality of height function's range in case of maximally many rectangular islands - computed by cuts},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {296-307},
     zbl = {1258.05124},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0103-x}
}
Eszter Horváth; Branimir Šešelja; Andreja Tepavčević. Cardinality of height function’s range in case of maximally many rectangular islands - computed by cuts. Open Mathematics, Tome 11 (2013) pp. 296-307. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0103-x/

[1] Barát J., Hajnal P., Horváth E.K., Elementary proof techniques for the maximum number of islands, European J. Combin., 2011, 32(2), 276–281 http://dx.doi.org/10.1016/j.ejc.2010.10.001 | Zbl 1227.05006

[2] Czédli G., The number of rectangular islands by means of distributive lattices, European J. Combin., 2009, 30(1), 208–215 http://dx.doi.org/10.1016/j.ejc.2008.02.005 | Zbl 1187.05024

[3] Czédli G., Hartmann M., Schmidt E.T., CD-independent subsets in distributive lattices, Publ. Math. Debrecen, 2009, 74(1–2), 127–134 | Zbl 1199.06032

[4] Czédli G., Schmidt E.T., CDW-independent subsets in distributive lattices, Acta Sci. Math. (Szeged), 2009, 75(1–2), 49–53 | Zbl 1199.06033

[5] Foldes S., Singhi N.M., On instantaneous codes, J. Comb. Inf. Syst. Sci., 2006, 31(1–4), 307–316 | Zbl 1278.94037

[6] Gerstenkorn T., Tepavčevic A., Lattice valued intuitionistic fuzzy sets, Cent. Eur. J. Math., 2004, 2(3), 388–398 http://dx.doi.org/10.2478/BF02475236 | Zbl 1060.03074

[7] Horváth E.K., Horváth G., Németh Z., Szabó Cs., The number of square islands on a rectangular sea, Acta Sci. Math. (Szeged), 2010, 76(1–2), 35–48 | Zbl 1224.05025

[8] Horváth E.K., Máder A., Tepavčevic A., One-dimensional Czédli-type islands, College Math. J., 2011, 42(5), 374–378 http://dx.doi.org/10.4169/college.math.j.42.5.374

[9] Horváth E.K., Németh Z., Pluhár G., The number of triangular islands on a triangular grid, Period. Math. Hungar., 2009, 58(1), 25–34 http://dx.doi.org/10.1007/s10998-009-9025-7 | Zbl 1199.05012

[10] Horváth E.K., Šešelja B., Tepavčevic A., Cut approach to islands in rectangular fuzzy relations, Fuzzy Sets and Systems, 2010, 161(24), 3114–3126 http://dx.doi.org/10.1016/j.fss.2010.04.019 | Zbl 1214.03039

[11] Lengvárszky Zs., The minimum cardinality of maximal systems of rectangular islands, European J. Combin., 2009, 30(1), 216–219 http://dx.doi.org/10.1016/j.ejc.2008.02.006 | Zbl 1197.05019

[12] Lengvárszky Zs., Notes on systems of triangular islands, Acta Sci. Math. (Szeged), 2009, 75(3–4), 369–376

[13] Lengvárszky Zs., The size of maximal systems of square islands, European J. Combin., 2009, 30(4), 889–892 http://dx.doi.org/10.1016/j.ejc.2008.07.023 | Zbl 1194.05016

[14] Lengvárszky Zs., Pach P.P., A note on systems of rectangular islands: the continuous case, Acta Sci. Math. (Szeged), 2011, 77(1–2), 27–34 | Zbl 1249.05005

[15] Máder A., Makay G., The maximum number of rectangular islands, Teach. Math., 2011, 13(1), 31–44

[16] Máder A., Vajda R., Elementary approaches to the teaching of the combinatorial problem of rectangular islands, International Journal of Computers for Mathematical Learning, 2010, 15(3), 267–281 http://dx.doi.org/10.1007/s10758-010-9171-9

[17] Pach P.P., Pluhár G., Pongrácz A., Szabó Cs., The possible number of islands on the sea, J. Math. Anal. Appl., 2011, 375(1), 8–13 http://dx.doi.org/10.1016/j.jmaa.2010.08.012 | Zbl 1291.05020

[18] Pluhár G., The number of brick islands by means of distributive lattices, Acta Sci. Math. (Szeged), 2009, 75(1–2), 3–11 | Zbl 1195.05005

[19] Šešelja B., Tepavčevic A., Completion of ordered structures by cuts of fuzzy sets: an overview, Fuzzy Sets and Systems, 2003, 136(1), 1–19 http://dx.doi.org/10.1016/S0165-0114(02)00365-2 | Zbl 1020.06005

[20] Šešelja B., Tepavčevic A., Representing ordered structures by fuzzy sets: an overview, Fuzzy Sets and Systems, 2003, 136(1), 21–39 http://dx.doi.org/10.1016/S0165-0114(02)00366-4 | Zbl 1026.03039