On local convexity of nonlinear mappings between Banach spaces
Iryna Banakh ; Taras Banakh ; Anatolij Plichko ; Anatoliy Prykarpatsky
Open Mathematics, Tome 10 (2012), p. 2264-2271 / Harvested from The Polish Digital Mathematics Library

We find conditions for a smooth nonlinear map f: U → V between open subsets of Hilbert or Banach spaces to be locally convex in the sense that for some c and each positive ɛ < c the image f(B ɛ(x)) of each ɛ-ball B ɛ(x) ⊂ U is convex. We give a lower bound on c via the second order Lipschitz constant Lip2(f), the Lipschitz-open constant Lipo(f) of f, and the 2-convexity number conv2(X) of the Banach space X.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269784
@article{bwmeta1.element.doi-10_2478_s11533-012-0101-z,
     author = {Iryna Banakh and Taras Banakh and Anatolij Plichko and Anatoliy Prykarpatsky},
     title = {On local convexity of nonlinear mappings between Banach spaces},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {2264-2271},
     zbl = {1267.46027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0101-z}
}
Iryna Banakh; Taras Banakh; Anatolij Plichko; Anatoliy Prykarpatsky. On local convexity of nonlinear mappings between Banach spaces. Open Mathematics, Tome 10 (2012) pp. 2264-2271. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0101-z/

[1] Augustynowicz A., Dzedzej Z., Gelman B.D., The solution set to BVP for some functional-differential inclusions, Set-Valued Anal., 1998, 6(3), 257–263 http://dx.doi.org/10.1023/A:1008618606813[Crossref] | Zbl 0931.34046

[2] Borwein J., Guirao A.J., Hájek P., Vanderwerff J., Uniformly convex functions on Banach spaces, Proc. Amer. Math. Soc., 2009, 137(3), 1081–1091 http://dx.doi.org/10.1090/S0002-9939-08-09630-5[Crossref] | Zbl 1184.52009

[3] Deimling K., Nonlinear Functional Analysis, Springer, Berlin, 1985 http://dx.doi.org/10.1007/978-3-662-00547-7[Crossref]

[4] Deville R., Godefroy G., Zizler V., Smoothness and Renormings in Banach Spaces, Pitman Monogr. Surveys Pure Appl. Math., 64, Longman Scientific & Technical, Harlow, 1993 | Zbl 0782.46019

[5] DeVore R.A., Lorentz G.G., Constructive Approximation, Grundlehren Math. Wiss., 303, Springer, Berlin, 1993 | Zbl 0797.41016

[6] Goebel K., Concise Course on Fixed Point Theorems, Yokohama Publishers, Yokohama, 2002 | Zbl 1066.47055

[7] Goebel K., Kirk W.A., Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math., 28, Cambridge University Press, Cambridge, 1990 | Zbl 0708.47031

[8] Górniewicz L., Topological Fixed Point Theory of Multivalued Mappings, Math. Appl., 495, Kluwer, Dordrecht, 1999 | Zbl 0937.55001

[9] Guirao A.J., Hájek P., On the moduli of convexity, Proc. Amer. Math. Soc., 2007, 135(10), 3233–3240 http://dx.doi.org/10.1090/S0002-9939-07-09030-2[Crossref][WoS] | Zbl 1129.46004

[10] Hájek P., Montesinos V., Zizler V., Geometry and Gâteaux smoothness in separable Banach spaces, Oper. Matrices, 2012, 6(2), 201–232 [Crossref][WoS] | Zbl 1277.46006

[11] Hörmander L., Sur la fonction dáppui des ensembles convexes dans un espace localement convexe, Ark. Math., 1955, 3(2), 181–186 http://dx.doi.org/10.1007/BF02589354[Crossref] | Zbl 0064.10504

[12] Krasnoselsky M.A., Zabreyko P.P., Geometric Methods of Nonlinear Analysis, Nauka, Moscow, 1975 (in Russian)

[13] Lajara S., Pallarés A.J., Troyanski S., Moduli of convexity and smoothness of reflexive subspaces of L 1, J. Funct. Anal., 2011, 261(11), 3211–3225 http://dx.doi.org/10.1016/j.jfa.2011.07.024[Crossref] | Zbl 1239.46007

[14] Lindenstrauss J., Tzafriri L., Classical Banach Spaces II. Function Spaces, Ergeb. Math. Grenzgeb., 97, Springer, Berlin-New York, 1979 | Zbl 0403.46022

[15] Linke Yu.É., Application of Michaelś theorem and its converse to sublinear operators, Math. Notes, 1992, 52(1), 680–686 http://dx.doi.org/10.1007/BF01247650[Crossref] | Zbl 0787.47037

[16] Nirenberg L., Topics in Nonlinear Functional Analysis, Courant Institute of Mathematical Sciences, New York, 1974

[17] Prykarpatska N.K., Blackmore D.L., Prykarpatsky A.K., Pytel-Kudela M., On the inf-type extremality solutions to Hamilton-Jacobi equations, their regularity properties, and some generalizations, Miskolc Math. Notes, 2003, 4(2), 153–180 | Zbl 1053.35043

[18] Prykarpatsky A.K., A Borsuk-Ulam type generalization of the Leray-Schauder fixed point theorem, preprint available at http://arxiv.org/abs/0902.4416 | Zbl 1199.47222

[19] Prykarpatsky A.K., Blackmore D., A solution set analysis of a nonlinear operator equation using a Leray-Schauder type fixed point approach, Topology, 2009, 48(2–4) 182–185 http://dx.doi.org/10.1016/j.top.2009.11.017[WoS][Crossref] | Zbl 1192.65069

[20] Prykarpats’kyi A.K., An infinite-dimensional Borsuk-Ulam-type generalization of the Leray-Schauder fixed-point theorem and some applications, Ukrainian Math. J., 2008, 60(1), 114–120 http://dx.doi.org/10.1007/s11253-008-0046-3[Crossref]

[21] Samoilenko A.M., Prykarpats’kyi A.K., Samoilenko V.H., Lyapunov-Schmidt approach to studying homoclinics splitting in weakly perturbed Lagrangian and Hamiltonian systems, Ukrainian Math. J., 2003, 55(1), 82–92 http://dx.doi.org/10.1023/A:1025072619144[Crossref]

[22] Schwartz J.T., Nonlinear Functional Analysis, Gordon and Breach, New York-London-Paris, 1969