Limiting distribution for a simple model of order book dynamics
Łukasz Kruk
Open Mathematics, Tome 10 (2012), p. 2283-2295 / Harvested from The Polish Digital Mathematics Library

A continuous-time model for the limit order book dynamics is considered. The set of outstanding limit orders is modeled as a pair of random counting measures and the limiting distribution of this pair of measure-valued processes is obtained under suitable conditions on the model parameters. The limiting behavior of the bid-ask spread and the midpoint of the bid-ask interval are also characterized.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269746
@article{bwmeta1.element.doi-10_2478_s11533-012-0098-3,
     author = {\L ukasz Kruk},
     title = {Limiting distribution for a simple model of order book dynamics},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {2283-2295},
     zbl = {1282.91133},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0098-3}
}
Łukasz Kruk. Limiting distribution for a simple model of order book dynamics. Open Mathematics, Tome 10 (2012) pp. 2283-2295. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0098-3/

[1] Asmussen S., Applied Probability and Queues, 2nd ed., Appl. Math. (N.Y.), 51, Springer, New York, 2003 | Zbl 1029.60001

[2] Bayraktar E., Horst U., Sircar R., Queueing theoretic approaches to financial price fluctuations, In: Financial Engineering, Handbooks Oper. Res. Management Sci., 15, Elsevier/North-Holland, Amsterdam, 2007, 637–677

[3] Cont R., Stoikov S., Talreja R., A stochastic model for order book dynamics, Oper. Res., 2010, 58(3), 549–563 http://dx.doi.org/10.1287/opre.1090.0780[Crossref][WoS] | Zbl 1232.91719

[4] Doytchinov B., Lehoczky J., Shreve S., Real-time queues in heavy traffic with earliest-deadline-first queue discipline, Ann. Appl. Probab., 2001, 11(2), 332–378 http://dx.doi.org/10.1214/aoap/1015345295[Crossref] | Zbl 1015.60086

[5] Ethier S.N., Kurtz T.G., Markov Processes. Characterization and Convergence, Wiley Ser. Probab. Math. Statist., John Wiley & Sons, New York, 1986

[6] Iglehart D.L., Whitt W., Multiple channel queues in heavy traffic. I, Adv. in Appl. Probab., 1970, 2(1), 150–177 http://dx.doi.org/10.2307/3518347[Crossref] | Zbl 0218.60098

[7] Karatzas I., Shreve S.E., Brownian Motion and Stochastic Calculus, Grad. Texts in Math., 113, Springer, New York, 1988 | Zbl 0638.60065

[8] Kruk Ł., Functional limit theorems for a simple auction, Math. Oper. Res., 2003, 28(4), 716–751 http://dx.doi.org/10.1287/moor.28.4.716.20519[Crossref] | Zbl 1082.91044

[9] Luckock H., A steady-state model of the continuous double auction, Quant. Finance, 2003, 3(5), 385–404 http://dx.doi.org/10.1088/1469-7688/3/5/305[Crossref]

[10] Mendelson H., Market behavior in a clearing house, Econometrica, 1982, 50(6), 1505–1524 http://dx.doi.org/10.2307/1913393[Crossref] | Zbl 0502.90009

[11] Roşu I., A dynamic model of the limit order book, Review of Financial Studies, 2009, 22(11), 4601–4641 http://dx.doi.org/10.1093/rfs/hhp011[Crossref]