We consider a conservative second order Hamiltonian system in ℝ3 with a potential V having a global maximum at the origin and a line l ∩ 0 = ϑ as a set of singular points. Under a certain compactness condition on V at infinity and a strong force condition at singular points we study, by the use of variational methods and geometrical arguments, the existence of homoclinic solutions of the system.
@article{bwmeta1.element.doi-10_2478_s11533-012-0096-5, author = {Joanna Janczewska and Jakub Maksymiuk}, title = {Homoclinic orbits for a class of singular second order Hamiltonian systems in $\mathbb{R}$3}, journal = {Open Mathematics}, volume = {10}, year = {2012}, pages = {1920-1927}, zbl = {1261.34037}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0096-5} }
Joanna Janczewska; Jakub Maksymiuk. Homoclinic orbits for a class of singular second order Hamiltonian systems in ℝ3. Open Mathematics, Tome 10 (2012) pp. 1920-1927. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0096-5/
[1] Bertotti M.L., Jeanjean L., Multiplicity of homoclinic solutions for singular second-order conservative systems, Proc. Roy. Soc. Edinburgh Sect. A, 1996, 126(6), 1169–1180 http://dx.doi.org/10.1017/S0308210500023349[Crossref] | Zbl 0868.34001
[2] Bolotin S., Variational criteria for nonintegrability and chaos in Hamiltonian systems, In: Hamiltonian Mechanics, Torun, 28 June–2 July, 1993, NATO Adv. Sci. Inst. Ser. B Phys., 331, Plenum, New York, 1994, 173–179
[3] Borges M.J., Heteroclinic and homoclinic solutions for a singular Hamiltonian system, European J. Appl. Math., 2006, 17(1), 1–32 http://dx.doi.org/10.1017/S0956792506006516[Crossref] | Zbl 1160.37390
[4] Caldiroli P., Jeanjean L., Homoclinics and heteroclinics for a class of conservative singular Hamiltonian systems, J. Differential Equations, 1997, 136(1), 76–114 http://dx.doi.org/10.1006/jdeq.1996.3230[Crossref] | Zbl 0887.34044
[5] Caldiroli P., Nolasco M., Multiple homoclinic solutions for a class of autonomous singular systems in ℝ2, Ann. Inst. H.Poincaré Anal. Non Linéaire, 1998, 15(1), 113–125 http://dx.doi.org/10.1016/S0294-1449(99)80022-5[Crossref] | Zbl 0907.58014
[6] Gordon W.B., Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 1975, 204, 113–135 http://dx.doi.org/10.1090/S0002-9947-1975-0377983-1[Crossref] | Zbl 0276.58005
[7] Izydorek M., Janczewska J., Homoclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 2005, 219(2), 375–389 http://dx.doi.org/10.1016/j.jde.2005.06.029[Crossref] | Zbl 1080.37067
[8] Izydorek M., Janczewska J., Heteroclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 2007, 238(2), 381–393 http://dx.doi.org/10.1016/j.jde.2007.03.013[Crossref] | Zbl 1117.37033
[9] Janczewska J., The existence and multiplicity of heteroclinic and homoclinic orbits for a class of singular Hamiltonian systems in ℝ2, Boll. Unione Mat. Ital., 2010, 3(3), 471–491 | Zbl 1214.37049
[10] Rabinowitz P.H., Periodic and heteroclinic orbits for a periodic Hamiltonian system, Ann. Inst. H.Poincaré Anal. Non Linéaire, 1989, 6(5), 331–346 | Zbl 0701.58023
[11] Rabinowitz P.H., Homoclinics for an almost periodically forced singular Hamiltonian system, Topol. Methods Nonlinear Anal., 1995, 6(1), 49–66 | Zbl 0857.34049
[12] Rabinowitz P.H., Multibump solutions for an almost periodically forced singular Hamiltonian system, Electron. J. Differential Equations, 1995, #12 | Zbl 0828.34034
[13] Rabinowitz P.H., Homoclinics for a singular Hamiltonian system, In: Geometric Analysis and the Calculus of Variations, International Press, Cambridge, 1996, 267–296 | Zbl 0936.37035
[14] Tanaka K., Homoclinic orbits for a singular second order Hamiltonian system, Ann. Inst. H.Poincaré Anal. Non Linéaire, 1990, 7(5), 427–438 | Zbl 0712.58026