Concave iteration semigroups of linear continuous set-valued functions
Andrzej Smajdor ; Wilhelmina Smajdor
Open Mathematics, Tome 10 (2012), p. 2272-2282 / Harvested from The Polish Digital Mathematics Library

Let F t: t ≥ 0 be a concave iteration semigroup of linear continuous set-valued functions defined on a convex cone K with nonempty interior in a Banach space X with values in cc(K). If we assume that the Hukuhara differences F 0(x) − F t (x) exist for x ∈ K and t > 0, then D t F t (x) = (−1)F t ((−1)G(x)) for x ∈ K and t ≥ 0, where D t F t (x) denotes the derivative of F t (x) with respect to t and G(x)=lims0F0x-FsxF0x-Fsx-s-s for x ∈ K.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269048
@article{bwmeta1.element.doi-10_2478_s11533-012-0095-6,
     author = {Andrzej Smajdor and Wilhelmina Smajdor},
     title = {Concave iteration semigroups of linear continuous set-valued functions},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {2272-2282},
     zbl = {1260.26031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0095-6}
}
Andrzej Smajdor; Wilhelmina Smajdor. Concave iteration semigroups of linear continuous set-valued functions. Open Mathematics, Tome 10 (2012) pp. 2272-2282. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0095-6/

[1] Berge C., Topological Spaces, Oliver and Boyd, Edinburgh-London, 1963

[2] Dinghas A., Zum Minkowskischen Integralbegriff abgeschlossener Mengen, Math. Z., 1956, 66, 173–188 http://dx.doi.org/10.1007/BF01186606[Crossref]

[3] Edgar G.A., Measure, Topology, and Fractal Geometry, Undergrad. Texts Math., Springer, New York, 1990 [Crossref]

[4] Hukuhara M., Intégration des applications mesurables dont la valeur est un compact convexe, Funkcial. Ekvac., 1967, 10, 205–223 | Zbl 0161.24701

[5] Kwiecinska G., On the intermediate value property of multivalued functions, Real Anal. Exchange, 2000/2001, 26(1), 245–260 | Zbl 1018.26020

[6] Nikodem K., On concave and midpoint concave set-valued functions, Glasnik Mat., 1987, 22(42)(1), 69–76 | Zbl 0642.39006

[7] Nikodem K., On Jensenś functional equation for set-valued functions, Rad. Mat., 1987, 3(1), 23–33 | Zbl 0628.39013

[8] Olko J., Concave iteration semigroups of linear set-valued functions, Ann. Polon. Math., 1999, 71(1), 31–38 | Zbl 0969.47030

[9] Piszczek M., Integral representations of convex and concave set-valued functions, Demonstratio Math., 2002, 35(4), 727–742 | Zbl 1025.28005

[10] Piszczek M., Second Hukuhara derivative and cosine family of linear set-valued functions, Ann. Acad. Pedagog. Crac. Stud. Math., 2006, 5, 87–98 | Zbl 1156.26308

[11] Piszczek M., On multivalued iteration semigroups, Aequationes Math., 2011, 81(1–2), 97–108 http://dx.doi.org/10.1007/s00010-010-0034-1[Crossref] | Zbl 1213.26030

[12] Rådström H., An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc., 1952, 3(1), 165–169 http://dx.doi.org/10.2307/2032477[Crossref]

[13] Smajdor A., On regular multivalued cosine families, Ann. Math. Sil., 1999, 13, 271–280 | Zbl 0946.39013

[14] Smajdor A., Hukuharaś derivative and concave iteration semigrups of linear set-valued functions, J. Appl. Anal., 2002, 8(2), 297–305 http://dx.doi.org/10.1515/JAA.2002.297[Crossref]

[15] Smajdor A., On concave iteration semigroups of linear set-valued functions, Aequationes Math., 2008, 75(1–2), 149–162 http://dx.doi.org/10.1007/s00010-007-2876-8[Crossref] | Zbl 1148.39020