The structure of plane graphs with independent crossings and its applications to coloring problems
Xin Zhang ; Guizhen Liu
Open Mathematics, Tome 11 (2013), p. 308-321 / Harvested from The Polish Digital Mathematics Library

If a graph G has a drawing in the plane in such a way that every two crossings are independent, then we call G a plane graph with independent crossings or IC-planar graph for short. In this paper, the structure of IC-planar graphs with minimum degree at least two or three is studied. By applying their structural results, we prove that the edge chromatic number of G is Δ if Δ ≥ 8, the list edge (resp. list total) chromatic number of G is Δ (resp. Δ + 1) if Δ ≥ 14 and the linear arboricity of G is ℈Δ/2⌊ if Δ ≥ 17, where G is an IC-planar graph and Δ is the maximum degree of G.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269573
@article{bwmeta1.element.doi-10_2478_s11533-012-0094-7,
     author = {Xin Zhang and Guizhen Liu},
     title = {The structure of plane graphs with independent crossings and its applications to coloring problems},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {308-321},
     zbl = {1258.05028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0094-7}
}
Xin Zhang; Guizhen Liu. The structure of plane graphs with independent crossings and its applications to coloring problems. Open Mathematics, Tome 11 (2013) pp. 308-321. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0094-7/

[1] Akiyama J., Exoo G., Harary F., Covering and packing in graphs. III: Cyclic and acyclic invariants, Math. Slovaca, 1980, 30(4), 405–417 | Zbl 0458.05050

[2] Albertson M.O., Chromatic number, independence ratio, and crossing number, Ars Math. Contemp., 2008, 1(1), 1–6 | Zbl 1181.05032

[3] Bondy J.A., Murty U.S.R., Graph Theory with Applications, Elsevier, New York, 1976 | Zbl 1226.05083

[4] Borodin O.V., Solution of the Ringel problem on the vertex-face coloring of plane graphs and on the coloring of 1-planar graphs, Metody Diskret. Analiz., 1984, 41, 12–26

[5] Borodin O.V., A new proof of the 6-color theorem, J. Graph Theory, 1995, 19(4), 507–521 http://dx.doi.org/10.1002/jgt.3190190406 | Zbl 0826.05027

[6] Borodin O.V., Kostochka A.V., Woodall D.R., List edge and list total colorings of multigraphs, J. Combin. Theory Ser. B, 1997, 71(2), 184–204 http://dx.doi.org/10.1006/jctb.1997.1780 | Zbl 0876.05032

[7] Cygan M., Hou J.-F., Kowalik Ł., Lužar B., Wu J.-L., A planar linear arboricity conjecture, J. Graph Theory, 2012, 69(4), 403–425 http://dx.doi.org/10.1002/jgt.20592 | Zbl 1242.05064

[8] Erman R., Havet F., Lidický B., Pangrác O., 5-coloring graphs with 4 crossings, SIAM J. Discrete Math., 2011, 25(1), 401–422 http://dx.doi.org/10.1137/100784059 | Zbl 1232.05078

[9] Fabrici I., Madaras T., The structure of 1-planar graphs, Discrete Math., 2007, 307(7–8), 854–865 http://dx.doi.org/10.1016/j.disc.2005.11.056 | Zbl 1111.05026

[10] Jensen T.R., Toft B., Graph Coloring Problems, Wiley-Intersci. Ser. Discrete Math. Optim., John Wiley & Sons, New York, 1995 | Zbl 0855.05054

[11] Král D., Stacho L., Coloring plane graphs with independent crossings, J. Graph Theory, 2010, 64(3), 184–205 | Zbl 1208.05019

[12] Li X., Average degrees of critical graphs, Ars Combin., 2005, 74, 303–322 | Zbl 1074.05037

[13] Pach J., Tóth G., Graphs drawn with few crossings per edge, Combinatorica, 1997, 17(3), 427–439 http://dx.doi.org/10.1007/BF01215922 | Zbl 0902.05017

[14] Ringel G., Ein Sechsfarbenproblem auf der Kugel, Abh. Math. Sem. Univ. Hamburg, 1965, 29, 107–117 http://dx.doi.org/10.1007/BF02996313 | Zbl 0132.20701

[15] Sanders D.P., Zhao Y., On total 9-coloring planar graphs of maximum degree seven, J. Graph Theory, 1999, 31(1), 67–73 http://dx.doi.org/10.1002/(SICI)1097-0118(199905)31:1<67::AID-JGT6>3.0.CO;2-C

[16] Sanders D.P., Zhao Y., Planar graphs of maximum degree seven are class I, J. Combin. Theory Ser. B, 2001, 83(2), 201–212 http://dx.doi.org/10.1006/jctb.2001.2047 | Zbl 1024.05031

[17] Vizing V.G., Critical graphs with given chromatic class, Diskret. Analiz., 1965, 5, 9–17

[18] Wu J.-L., On the linear arboricity of planar graphs, J. Graph Theory, 1999, 31(2), 129–134 http://dx.doi.org/10.1002/(SICI)1097-0118(199906)31:2<129::AID-JGT5>3.0.CO;2-A

[19] Wu J., Wang P., List-edge and list-total colorings of graphs embedded on hyperbolic surfaces, Discrete Math., 2008, 308(4), 6210–6215 http://dx.doi.org/10.1016/j.disc.2007.11.044 | Zbl 1189.05067

[20] Wu J.-L., Wu Y.-W., The linear arboricity of planar graphs of maximum degree seven is four, J. Graph Theory, 2008, 58(3), 210–220 http://dx.doi.org/10.1002/jgt.20305 | Zbl 1158.05023

[21] Zhang X., Hou J., Liu G., On total colorings of 1-planar graphs, preprint available at http://xinzhang.hpage.com/get_file.php?id=1513981&vnr=342077 | Zbl 1317.05066

[22] Zhang X., Wu J.-L., On edge colorings of 1-planar graphs, Inform. Process. Lett., 2011, 111(3), 124–128 http://dx.doi.org/10.1016/j.ipl.2010.11.001 | Zbl 1259.05050

[23] Zhang X., Wu J., Liu G., List edge and list total coloring of 1-planar graphs, Front. Math. China (in press), DOI: 10.1007/s11464-012-0184-7 | Zbl 1254.05050