Subtleties concerning conformal tractor bundles
C. Graham ; Travis Willse
Open Mathematics, Tome 10 (2012), p. 1721-1732 / Harvested from The Polish Digital Mathematics Library

The realization of tractor bundles as associated bundles in conformal geometry is studied. It is shown that different natural choices of principal bundle with normal Cartan connection corresponding to a given conformal manifold can give rise to topologically distinct associated tractor bundles for the same inducing representation. Consequences for homogeneous models and conformal holonomy are described. A careful presentation is made of background material concerning standard tractor bundles and equivalence between parabolic geometries and underlying structures.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269690
@article{bwmeta1.element.doi-10_2478_s11533-012-0093-8,
     author = {C. Graham and Travis Willse},
     title = {Subtleties concerning conformal tractor bundles},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {1721-1732},
     zbl = {1262.53031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0093-8}
}
C. Graham; Travis Willse. Subtleties concerning conformal tractor bundles. Open Mathematics, Tome 10 (2012) pp. 1721-1732. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0093-8/

[1] Bailey T.N., Eastwood M.G., Gover A.R., Thomas’s structure bundle for conformal, projective and related structures, Rocky Mountain J. Math., 1994, 24(4), 1191–1217 http://dx.doi.org/10.1216/rmjm/1181072333 | Zbl 0828.53012

[2] Čap A., Gover A.R., Tractor calculi for parabolic geometries, Trans. Amer. Math. Soc., 2002, 354(4), 1511–1548 http://dx.doi.org/10.1090/S0002-9947-01-02909-9 | Zbl 0997.53016

[3] Čap A., Gover A.R., Standard tractors and the conformal ambient metric construction, Ann. Global Anal. Geom., 2003, 24(3), 231–259 http://dx.doi.org/10.1023/A:1024726607595 | Zbl 1039.53021

[4] Čap A., Schichl H., Parabolic geometries and canonical Cartan connections, Hokkaido Math. J., 2000, 29(3), 453–505

[5] Čap A., Slovák J., Parabolic Geometries I, Math. Surveys Monogr., 154, American Mathematical Society, Providence, 2009 | Zbl 1183.53002

[6] Čap A., Slovák J., Souček V., Bernstein-Gelfand-Gelfand sequences, Ann. of Math., 2001, 154(1), 97–113 http://dx.doi.org/10.2307/3062111

[7] Fefferman C., Graham C.R., Conformal invariants, In: The Mathematical Heritage of Élie Cartan, Lyon, 1984, Astérisque, 1985, Numero Hors Serie, 95–116

[8] Fefferman C., Graham C.R., The Ambient Metric, Ann. of Math. Stud., 178, Princeton University Press, Princeton, 2012 | Zbl 1243.53004

[9] Graham C.R., Willse T., Parallel tractor extension and ambient metrics of holonomy split G 2, J. Diff. Geom. (in press), preprint available at http://arxiv.org/abs/1109.3504

[10] Hammerl M., Sagerschnig K., Conformal structures associated to generic rank 2 distributions on 5-manifolds - characterization and Killing-field decomposition, SIGMA Symmetry Integrability Geom. Methods Appl., 2009, 5, #081 | Zbl 1191.53016

[11] Morimoto T., Geometric structures on filtered manifolds, Hokkaido Math. J., 1993, 22(3), 263–347 | Zbl 0801.53019

[12] Nurowski P., Differential equations and conformal structures, J. Geom. Phys., 2005, 55(1), 19–49 http://dx.doi.org/10.1016/j.geomphys.2004.11.006 | Zbl 1082.53024

[13] Sharpe R.W., Differential Geometry, Grad. Texts in Math., 166, Springer, New York, 1997

[14] Tanaka N., On the equivalence problems associated with simple graded Lie algebras, Hokkaido Math. J., 1979, 8(1), 23–84 | Zbl 0409.17013