The realization of tractor bundles as associated bundles in conformal geometry is studied. It is shown that different natural choices of principal bundle with normal Cartan connection corresponding to a given conformal manifold can give rise to topologically distinct associated tractor bundles for the same inducing representation. Consequences for homogeneous models and conformal holonomy are described. A careful presentation is made of background material concerning standard tractor bundles and equivalence between parabolic geometries and underlying structures.
@article{bwmeta1.element.doi-10_2478_s11533-012-0093-8, author = {C. Graham and Travis Willse}, title = {Subtleties concerning conformal tractor bundles}, journal = {Open Mathematics}, volume = {10}, year = {2012}, pages = {1721-1732}, zbl = {1262.53031}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0093-8} }
C. Graham; Travis Willse. Subtleties concerning conformal tractor bundles. Open Mathematics, Tome 10 (2012) pp. 1721-1732. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0093-8/
[1] Bailey T.N., Eastwood M.G., Gover A.R., Thomas’s structure bundle for conformal, projective and related structures, Rocky Mountain J. Math., 1994, 24(4), 1191–1217 http://dx.doi.org/10.1216/rmjm/1181072333 | Zbl 0828.53012
[2] Čap A., Gover A.R., Tractor calculi for parabolic geometries, Trans. Amer. Math. Soc., 2002, 354(4), 1511–1548 http://dx.doi.org/10.1090/S0002-9947-01-02909-9 | Zbl 0997.53016
[3] Čap A., Gover A.R., Standard tractors and the conformal ambient metric construction, Ann. Global Anal. Geom., 2003, 24(3), 231–259 http://dx.doi.org/10.1023/A:1024726607595 | Zbl 1039.53021
[4] Čap A., Schichl H., Parabolic geometries and canonical Cartan connections, Hokkaido Math. J., 2000, 29(3), 453–505
[5] Čap A., Slovák J., Parabolic Geometries I, Math. Surveys Monogr., 154, American Mathematical Society, Providence, 2009 | Zbl 1183.53002
[6] Čap A., Slovák J., Souček V., Bernstein-Gelfand-Gelfand sequences, Ann. of Math., 2001, 154(1), 97–113 http://dx.doi.org/10.2307/3062111
[7] Fefferman C., Graham C.R., Conformal invariants, In: The Mathematical Heritage of Élie Cartan, Lyon, 1984, Astérisque, 1985, Numero Hors Serie, 95–116
[8] Fefferman C., Graham C.R., The Ambient Metric, Ann. of Math. Stud., 178, Princeton University Press, Princeton, 2012 | Zbl 1243.53004
[9] Graham C.R., Willse T., Parallel tractor extension and ambient metrics of holonomy split G 2, J. Diff. Geom. (in press), preprint available at http://arxiv.org/abs/1109.3504
[10] Hammerl M., Sagerschnig K., Conformal structures associated to generic rank 2 distributions on 5-manifolds - characterization and Killing-field decomposition, SIGMA Symmetry Integrability Geom. Methods Appl., 2009, 5, #081 | Zbl 1191.53016
[11] Morimoto T., Geometric structures on filtered manifolds, Hokkaido Math. J., 1993, 22(3), 263–347 | Zbl 0801.53019
[12] Nurowski P., Differential equations and conformal structures, J. Geom. Phys., 2005, 55(1), 19–49 http://dx.doi.org/10.1016/j.geomphys.2004.11.006 | Zbl 1082.53024
[13] Sharpe R.W., Differential Geometry, Grad. Texts in Math., 166, Springer, New York, 1997
[14] Tanaka N., On the equivalence problems associated with simple graded Lie algebras, Hokkaido Math. J., 1979, 8(1), 23–84 | Zbl 0409.17013