We introduce the tractor formalism from conformal geometry to the study of smooth metric measure spaces. In particular, this gives rise to a correspondence between quasi-Einstein metrics and parallel sections of certain tractor bundles. We use this formulation to give a sharp upper bound on the dimension of the vector space of quasi-Einstein metrics, providing a different perspective on some recent results of He, Petersen and Wylie.
@article{bwmeta1.element.doi-10_2478_s11533-012-0091-x, author = {Jeffrey Case}, title = {Smooth metric measure spaces, quasi-Einstein metrics, and tractors}, journal = {Open Mathematics}, volume = {10}, year = {2012}, pages = {1733-1762}, zbl = {1263.53038}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0091-x} }
Jeffrey Case. Smooth metric measure spaces, quasi-Einstein metrics, and tractors. Open Mathematics, Tome 10 (2012) pp. 1733-1762. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0091-x/
[1] Alt J., The geometry of conformally Einstein metrics with degenerate Weyl tensor, http://arxiv.org/abs/math/0608598
[2] Armstrong S., Definite signature conformal holonomy: a complete classification, J. Geom. Phys., 2007, 57(10), 2024–2048 http://dx.doi.org/10.1016/j.geomphys.2007.05.001 | Zbl 05201910
[3] Bailey T.N., Eastwood M.G., Gover A.R., Thomas’s structure bundle for conformal, projective and related structures, Rocky Mountain J. Math., 1994, 24(4), 1191–1217 http://dx.doi.org/10.1216/rmjm/1181072333 | Zbl 0828.53012
[4] Bakry D., Émery M., Diffusions hypercontractives, In: Séminaire de Probabilités, 19, 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, 1985, 177–206 http://dx.doi.org/10.1007/BFb0075847
[5] Baum H., Juhl A., Conformal Differential Geometry, Oberwolfach Seminars, 40, Birkhäuser, Basel, 2010 | Zbl 1189.53045
[6] Besse A.L., Einstein Manifolds, Ergeb. Math. Grenzgeb., 10, Springer, Berlin, 1987
[7] Böhm C., Non-compact cohomogeneity one Einstein manifolds, Bull. Soc. Math. France, 1999, 127(1), 135–177 | Zbl 0935.53021
[8] Branson T., Čap A., Eastwood M., Gover A.R., Prolongations of geometric overdetermined systems, Internat. J. Math., 2006, 17(6), 641–664 http://dx.doi.org/10.1142/S0129167X06003655 | Zbl 1101.35060
[9] Branson T., Gover A.R., Conformally invariant operators, differential forms, cohomology and a generalisation of Q-curvature. Comm. Partial Differential Equations, 2005, 30(10–12), 1611–1669 http://dx.doi.org/10.1080/03605300500299943 | Zbl 1226.58011
[10] Cao H.-D., Chen Q., On locally conformally flat gradient steady Ricci solitons, Trans. Amer. Math. Soc., 2012, 364(5), 2377–2391 http://dx.doi.org/10.1090/S0002-9947-2011-05446-2 | Zbl 1245.53038
[11] Čap A., Gover A.R., Tractor calculi for parabolic geometries, Trans. Amer. Math. Soc., 2002, 354(4), 1511–1548 http://dx.doi.org/10.1090/S0002-9947-01-02909-9 | Zbl 0997.53016
[12] Čap A., Slovák J., Parabolic Geometries I, Math. Surveys Monogr., 154, American Mathematical Society, Providence, 2009 | Zbl 1183.53002
[13] Case J.S., Smooth metric measure spaces and quasi-Einstein metrics, preprint available at http://arxiv.org/abs/1011.2723
[14] Case J.S., The energy of a smooth metric measure space and applications, preprint available at http://arxiv.org/abs/1011.2728
[15] Case J.S., Sharp metric obstructions for quasi-Einstein metrics, preprint available at http://arxiv.org/abs/1110.3010
[16] Case J., Shu Y.-J., Wei G., Rigidity of quasi-Einstein metrics, Differential Geom. Appl., 2011, 29(1), 93–100 http://dx.doi.org/10.1016/j.difgeo.2010.11.003 | Zbl 1215.53033
[17] Catino G., Generalized quasi-Einstein manifolds with harmonic Weyl tensor, preprint available at http://arxiv.org/abs/1012.5405 | Zbl 1246.53040
[18] Catino G., Mantegazza C., Mazzieri L., Rimoldi M., Locally conformally flat quasi-Einstein manifolds, preprint available at http://arxiv.org/abs/1010.1418 | Zbl 1277.53039
[19] Chang S.-Y.A., Conformal invariants and partial differential equations, Bull. Amer. Math. Soc., 2005, 42(3), 365–393 http://dx.doi.org/10.1090/S0273-0979-05-01058-X
[20] Cheeger J., Colding T.H., On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom., 1997, 46(3), 406–480 | Zbl 0902.53034
[21] Corvino J., Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Comm. Math. Phys., 2000, 214(1), 137–189 http://dx.doi.org/10.1007/PL00005533 | Zbl 1031.53064
[22] Gover A.R., Almost Einstein and Poincaré-Einstein manifolds in Riemannian signature, J. Geom. Phys., 2010, 60(2), 182–204 http://dx.doi.org/10.1016/j.geomphys.2009.09.016 | Zbl 1194.53038
[23] Gover A.R., Nurowski P., Obstructions to conformally Einstein metrics in n dimensions, J. Geom. Phys., 2006, 56(3), 450–484 http://dx.doi.org/10.1016/j.geomphys.2005.03.001 | Zbl 1098.53014
[24] Gover A.R., Peterson L.J., Conformally invariant powers of the Laplacian, Q-curvature, and tractor calculus, Comm. Math. Phys., 2003, 235(2), 339–378 http://dx.doi.org/10.1007/s00220-002-0790-4 | Zbl 1022.58014
[25] Hammerl M., Invariant prolongation of BGG-operators in conformal geometry, Arch. Math. (Brno), 2008, 44(5), 367–384 | Zbl 1212.53014
[26] Hammerl M., Somberg P., Souček V., Šilhan J., On a new normalization for tractor covariant derivatives, preprint available at http://arxiv.org/abs/1003.6090 | Zbl 1264.58029
[27] He C., Petersen P., Wylie W., On the classification of warped product Einstein metrics, preprint available at http://arxiv.org/abs/1010.5488 | Zbl 1270.53075
[28] He C., Petersen P., Wylie W., The space of virtual solutions to the warped product Einstein equation, preprint available at http://arxiv.org/abs/1110.2456
[29] Kim D.-S., Kim Y.H., Compact Einstein warped product spaces with nonpositive scalar curvature, Proc. Amer. Math. Soc., 2003, 131(8), 2573–2576 http://dx.doi.org/10.1090/S0002-9939-03-06878-3 | Zbl 1029.53027
[30] Kobayashi S., Nomizu K., Foundations of Differential Geometry I, Interscience, New York-London, 1963 | Zbl 0119.37502
[31] Miao P., Tam L.-F., On the volume functional of compact manifolds with boundary with constant scalar curvature, Calc. Var. Partial Differential Equations, 2009, 36(2), 141–171 http://dx.doi.org/10.1007/s00526-008-0221-2 | Zbl 1175.49043
[32] Miao P., Tam L.-F., Einstein and conformally flat critical metrics of the volume functional, Trans. Amer. Math. Soc., 2011, 363(6), 2907–2937 http://dx.doi.org/10.1090/S0002-9947-2011-05195-0 | Zbl 1222.53041