Free CR distributions
Gerd Schmalz ; Jan Slovák
Open Mathematics, Tome 10 (2012), p. 1896-1913 / Harvested from The Polish Digital Mathematics Library

There are only some exceptional CR dimensions and codimensions such that the geometries enjoy a discrete classification of the pointwise types of the homogeneous models. The cases of CR dimensions n and codimensions n 2 are among the very few possibilities of the so-called parabolic geometries. Indeed, the homogeneous model turns out to be PSU(n+1,n)/P with a suitable parabolic subgroup P. We study the geometric properties of such real (2n+n 2)-dimensional submanifolds in n+n2 for all n > 1. In particular, we show that the fundamental invariant is of torsion type, we provide its explicit computation, and we discuss an analogy to the Fefferman construction of a circle bundle in the hypersurface type CR geometry.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269158
@article{bwmeta1.element.doi-10_2478_s11533-012-0090-y,
     author = {Gerd Schmalz and Jan Slov\'ak},
     title = {Free CR distributions},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {1896-1913},
     zbl = {1262.32039},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0090-y}
}
Gerd Schmalz; Jan Slovák. Free CR distributions. Open Mathematics, Tome 10 (2012) pp. 1896-1913. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0090-y/

[1] Armstrong S., Free 3-distributions: holonomy, Fefferman constructions and dual distributions, preprint available at http://arxiv.org/abs/0708.3027

[2] Čap A., Correspondence spaces and twistor spaces for parabolic geometries, J. Reine Angew. Math., 2005, 582, 143–172 | Zbl 1075.53022

[3] Čap A., Slovák J., Parabolic Geometries I, Math. Surveys Monogr., 154, American Mathematical Society, Providence, 2009 | Zbl 1183.53002

[4] Doubrov B., Slovák J., Inclusions between parabolic geometries, Pure Appl. Math. Q., 2010, 6(3), Special Issue: In Honor of Joseph J.Kohn, Part 1, 755–780 | Zbl 1208.53047

[5] Ežov V.V., Schmalz G., Poincaré automorphisms for nondegenerate CR quadrics, Math. Ann., 1994, 298(1), 79–87 http://dx.doi.org/10.1007/BF01459726 | Zbl 0847.32015

[6] Schmalz G., Slovák J., The geometry of hyperbolic and elliptic CR-manifolds of codimension two, Asian J. Math., 2000, 4(3), 565–598 | Zbl 0972.32025

[7] Schmalz G., Slovák J., Addendum to ”The geometry of hyperbolic and elliptic CR-manifolds of codimension two”, Asian J. Math., 4, 565–598, 2000, Asian J. Math., 2003, 7(3), 303–306 | Zbl 0972.32025

[8] Šilhan J., A real analog of Kostant’s version of the Bott-Borel-Weil theorem, J. Lie Theory, 2004, 14(2), 481–499 | Zbl 1090.17010

[9] Tanaka N., On the equivalence problem associated with simple graded Lie algebras, Hokkaido Math. J., 1979, 8(1), 23–84

[10] Yamaguchi K., Differential systems associated with simple graded Lie algebras, In: Progress in Differential Geometry, Adv. Stud. Pure Math., 22, Mathematical Society of Japan, Tokyo, 1993, 413–494 | Zbl 0812.17018