This paper discusses the connection between projective relatedness and conformal flatness for 4-dimensional manifolds admitting a metric of signature (+,+,+,+) or (+,+,+,−). It is shown that if one of the manifolds is conformally flat and not of the most general holonomy type for that signature then, in general, the connections of the manifolds involved are the same and the second manifold is also conformally flat. Counterexamples are provided which place limitations on the potential strengthening of the results.
@article{bwmeta1.element.doi-10_2478_s11533-012-0087-6, author = {Graham Hall}, title = {Projective relatedness and conformal flatness}, journal = {Open Mathematics}, volume = {10}, year = {2012}, pages = {1763-1770}, zbl = {1260.53037}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0087-6} }
Graham Hall. Projective relatedness and conformal flatness. Open Mathematics, Tome 10 (2012) pp. 1763-1770. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0087-6/
[1] Eisenhart L.P., Riemannian Geometry, 2nd ed., Princeton University Press, Princeton, 1949
[2] de Felice F., Clarke C.J.S., Relativity on Curved Manifolds, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 1990
[3] Hall G.S., Symmetries and Curvature Structure in General Relativity, World Sci. Lecture Notes Phys., 46, World Scientific, River Edge, 2004
[4] Hall G.S., Lonie D.P., Holonomy groups and spacetimes, Classical Quantum Gravity, 2000, 17(6), 1369–1382 http://dx.doi.org/10.1088/0264-9381/17/6/304 | Zbl 0957.83014
[5] Hall G.S., Lonie D.P., The principle of equivalence and cosmological metrics, J. Math. Phys., 2008, 49(2), #022502 http://dx.doi.org/10.1063/1.2837431 | Zbl 1153.81370
[6] Hall G.S., Lonie D.P., Holonomy and projective equivalence in 4-dimensional Lorentz manifolds, SIGMA Symmetry Integrability Geom. Methods Appl., 2009, 5, #066
[7] Hall G.S., Lonie D.P., Projective equivalence of Einstein spaces in general relativity, Classical Quantum Gravity, 2009, 26(12), #125009 | Zbl 1170.83443
[8] Hall G.S., Lonie D.P., Projective structure and holonomy in four-dimensional Lorentz manifolds, J. Geom. Phys., 2011, 61(2), 381–399 http://dx.doi.org/10.1016/j.geomphys.2010.10.007 | Zbl 1208.83035
[9] Hall G.S., Lonie D.P., Projective structure and holonomy in general relativity, Classical Quantum Gravity, 2011, 28(8), #083101 http://dx.doi.org/10.1088/0264-9381/28/8/083101 | Zbl 1213.83008
[10] Hall G., Wang Z., Projective structure in 4-dimensional manifolds with positive definite metrics, J. Geom. Phys., 2012, 62(2), 449–463 http://dx.doi.org/10.1016/j.geomphys.2011.10.007 | Zbl 1237.53012
[11] Kiosak V., Matveev V.S., Complete Einstein metrics are geodesically rigid, Comm. Math. Phys., 2009, 289(1), 383–400 http://dx.doi.org/10.1007/s00220-008-0719-7 | Zbl 1170.53025
[12] Kobayashi S., Nomizu K., Foundations of Differential Geometry, I, Interscience, New York-London, 1963 | Zbl 0119.37502
[13] Mikeš J., Kiosak V., Vanžurová A., Geodesic Mappings of Manifolds with Affine Connection, Palacký University Olomouc, Olomouc, 2008 | Zbl 1176.53004
[14] Mikeš J., Vanžurová A., Hinterleitner I., Geodesic Mappings and Some Generalizations, Palacký University Olomouc, Olomouc, 2009 | Zbl 1222.53002
[15] Petrov A.Z., Einstein Spaces, Pergamon, Oxford-Edinburgh-New York, 1969 | Zbl 0174.28305
[16] Schell J.F., Classification of four-dimensional Riemannian spaces, J. Math. Phys., 1961, 2, 202–206 http://dx.doi.org/10.1063/1.1703700 | Zbl 0096.21903
[17] Sinyukov N.S., Geodesic Mappings of Riemannian Spaces, Nauka, Moscow, 1979 (in Russian)