We give a brief presentation of gwistor spaces, which is a new concept from G 2 geometry. Then we compute the characteristic torsion T c of the gwistor space of an oriented Riemannian 4-manifold with constant sectional curvature k and deduce the condition under which T c is ∇c-parallel; this allows for the classification of the G 2 structure with torsion and the characteristic holonomy according to known references. The case of an Einstein base manifold is envisaged.
@article{bwmeta1.element.doi-10_2478_s11533-012-0082-y, author = {Rui Albuquerque}, title = {On the characteristic connection of gwistor space}, journal = {Open Mathematics}, volume = {11}, year = {2013}, pages = {149-160}, zbl = {1273.53018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0082-y} }
Rui Albuquerque. On the characteristic connection of gwistor space. Open Mathematics, Tome 11 (2013) pp. 149-160. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0082-y/
[1] Abbassi M.T.K., Kowalski O., On Einstein Riemannian g-natural metrics on unit tangent sphere bundles, Ann. Global Anal. Geom., 2010, 38(1), 11–20 http://dx.doi.org/10.1007/s10455-010-9197-1 | Zbl 1206.53049
[2] Agricola I., The Srní lectures on non-integrable geometries with torsion, Arch. Math. (Brno), 2006, 42(suppl.), 5–84 | Zbl 1164.53300
[3] Albuquerque R., On the G 2 bundle of a Riemannian 4-manifold, J. Geom. Phys., 2010, 60(6–8), 924–939 http://dx.doi.org/10.1016/j.geomphys.2010.02.009
[4] Albuquerque R., Homotheties and topology of tangent sphere bundles, preprint available at http://arxiv.org/abs/1012.4135 | Zbl 1307.55006
[5] Albuquerque R., Salavessa I., The G 2 sphere of a 4-manifold, Monatsh. Math., 2009, 158(4), 335–348 http://dx.doi.org/10.1007/s00605-008-0053-3 | Zbl 1193.53110
[6] Albuquerque R., Salavessa I., Erratum to: The G 2 sphere of a 4-manifold, Monatsh. Math., 2010, 160(1), 109–110 http://dx.doi.org/10.1007/s00605-010-0191-2 | Zbl 1187.53044
[7] Arvanitoyeorgos A., SO(n)-invariant Einstein metrics on Stiefel manifolds, In: Differential Geometry and Applications, Brno, August 28–September 1, 1995, Masaryk University, Brno, 1996, 1–5
[8] Baum H., Friedrich Th., Grunewald R., Kath I., Twistors and Killing Spinors on Riemannian Manifolds, Teubner-Texte Math., 124, Teubner, Stuttgart, 1991 | Zbl 0734.53003
[9] Besse A.L., Einstein Manifolds, Ergeb. Math. Grenzgeb., 10, Springer, Berlin, 1987
[10] Blair D.E., Riemannian Geometry of Contact and Symplectic Manifolds, Progr. Math., 203, Birkhaüser, Boston, 2002 | Zbl 1011.53001
[11] Borel A., Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math., 1953, 57(1), 115–207 http://dx.doi.org/10.2307/1969728 | Zbl 0052.40001
[12] Boyer Ch.P., Galicki K., Matzeu P., On eta-Einstein Sasakian geometry, Comm. Math. Phys., 2006, 262(1), 177–208 http://dx.doi.org/10.1007/s00220-005-1459-6 | Zbl 1103.53022
[13] Boyer Ch.P., Galicki K., Nakamaye M., Einstein metrics on rational homology 7-spheres, Ann. Inst. Fourier (Grenoble), 2002, 52(5), 1569–1584 http://dx.doi.org/10.5802/aif.1925 | Zbl 1023.53029
[14] Bryant R.L., Some remarks on G 2 structures, In: Proceedings of Gökova Geometry-Topology Conference, Gökova, May 24–28, 2004, May 30–June 3, 2005, Gökova Geometry/Topology Conference, Gökova/International Press, Somerville, 2006
[15] Chai Y.D., Chun S.H., Park J.H., Sekigawa K., Remarks on η-Einstein unit tangent bundles, Monatsh. Math., 2008, 155(1), 31–42 http://dx.doi.org/10.1007/s00605-008-0534-4 | Zbl 1151.53041
[16] Chiossi S.G., Swann A., G 2-structures with torsion from half-integrable nilmanifolds, J. Geom. Phys., 2005, 54(3), 262–285 http://dx.doi.org/10.1016/j.geomphys.2004.09.009 | Zbl 1086.53069
[17] Fernández M., Gray A., Riemannian manifolds with structure group G 2, Ann. Mat. Pura Appl., 1982, 132, 19–45 http://dx.doi.org/10.1007/BF01760975 | Zbl 0524.53023
[18] Friedrich Th., G 2-manifolds with parallel characteristic torsion, Differential Geom. Appl., 2007, 25(6), 632–648 http://dx.doi.org/10.1016/j.difgeo.2007.06.010 | Zbl 1141.53019
[19] Friedrich Th., Ivanov S., Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math., 2002, 6(2), 303–335 | Zbl 1127.53304
[20] Friedrich Th., Ivanov S., Killing spinor equations in dimension 7 and geometry of integrable G 2-manifolds, J. Geom. Phys., 2003, 48(1), 1–11 http://dx.doi.org/10.1016/S0393-0440(03)00005-6 | Zbl 1029.81037
[21] Friedrich Th., Kath I., 7-dimensional compact Riemannian manifolds with Killing spinors, Comm. Math. Phys., 1990, 133(3), 543–561 http://dx.doi.org/10.1007/BF02097009 | Zbl 0722.53038
[22] Kath I., Pseudo-Riemannian T-duals of compact Riemannian homogeneous spaces, Transform. Groups, 2000, 5(2), 157–179 http://dx.doi.org/10.1007/BF01236467 | Zbl 0965.53037
[23] Kobayashi S., Nomizu K., Foundations of Differential Geometry I, Interscience, New York-London, 1963 | Zbl 0119.37502
[24] Kobayashi S., Nomizu K., Foundations of Differential Geometry II, Interscience Tracts in Pure and Applied Mathematics, 15, Interscience, New York-London-Sydney, 1969 | Zbl 0175.48504
[25] Okumura M., Some remarks on space with a certain contact structure, Tôhoku Math. J., 1962, 14, 135–145 http://dx.doi.org/10.2748/tmj/1178244168 | Zbl 0119.37701
[26] Wang Mc.Y., Ziller W., On normal homogeneous Einstein manifolds, Ann. Sci. École Norm. Sup., 1985, 18(4), 563–633 | Zbl 0598.53049