The paper studies the existence of fixed points for some nonlinear (ws)-compact, weakly condensing and strictly quasibounded operators defined on an unbounded closed convex subset of a Banach space. Applications of the newly developed fixed point theorems are also discussed for proving the existence of positive eigenvalues and surjectivity of quasibounded operators in similar situations. The main condition in our results is formulated in terms of axiomatic measures of weak noncompactness.
@article{bwmeta1.element.doi-10_2478_s11533-012-0079-6, author = {Afif Amar}, title = {Fixed points, eigenvalues and surjectivity for (ws)-compact operators on unbounded convex sets}, journal = {Open Mathematics}, volume = {11}, year = {2013}, pages = {85-93}, zbl = {1292.47035}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0079-6} }
Afif Amar. Fixed points, eigenvalues and surjectivity for (ws)-compact operators on unbounded convex sets. Open Mathematics, Tome 11 (2013) pp. 85-93. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0079-6/
[1] Banaś J., Chlebowicz A., On existence of integrable solutions of a functional integral equation under Carathéodory conditions, Nonlinear Anal., 2009, 70(9), 3172–3179 http://dx.doi.org/10.1016/j.na.2008.04.020 | Zbl 1168.45005
[2] Ben Amar A., Nonlinear Leray-Schauder alternatives for decomposable operators in Dunford-Pettis spaces and application to nonlinear eigenvalue problems, Numer. Funct. Anal. Optim., 2010, 31(11), 1213–1220 http://dx.doi.org/10.1080/01630563.2010.519131 | Zbl 1217.47097
[3] Ben Amar A., Nonlinear Leray-Schauder alternatives and application to nonlinear problem arising in the theory of growing cell population, Cent. Eur. J. Math., 2011, 9(4), 851–865 http://dx.doi.org/10.2478/s11533-011-0039-6 | Zbl 1263.92044
[4] Ben Amar A., The Leray-Schauder condition for 1-set weakly contractive and (ws)-compact operators (manuscript) | Zbl 1313.47113
[5] Ben Amar A., Garcia-Falset J., Fixed point theorems for 1-set weakly contractive and pseudocontractive operators on an unbounded domain, Portugal. Math., 2011, 68(2), 125–147 http://dx.doi.org/10.4171/PM/1884 | Zbl 1241.47046
[6] De Blasi F.S., On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. R.S. Roumanie, 1977, 21(69) (3–4), 259–262
[7] Djebali S., Sahnoun Z., Nonlinear alternatives of Schauder and Krasnosel’skij types with applications to Hammerstein integral equations in L 1 spaces, J. Differential Equations, 2010, 249(9), 2061–2075 http://dx.doi.org/10.1016/j.jde.2010.07.013 | Zbl 1208.47044
[8] Emmanuele G., An existence theorem for Hammerstein integral equations, Portugal. Math., 1994, 51(4), 607–611 | Zbl 0823.45004
[9] Garcia-Falset J., Existence of fixed points and measures of weak noncompactness, Nonlinear Anal., 2009, 71(7–8), 2625–2633 http://dx.doi.org/10.1016/j.na.2009.01.096
[10] Garcia-Falset J., Existence of fixed points for the sum of two operators, Math. Nachr., 2010, 283(12), 1736–1757 http://dx.doi.org/10.1002/mana.200710197 | Zbl 1221.47101
[11] Isac G., Gowda M.S., Operators of class (S)1 +, Altman’s condition and the complementarity problem, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 1993, 40(1), 1–16 | Zbl 0804.47037
[12] Isac G., Németh S.Z., Scalar derivatives and scalar asymptotic derivatives. An Altman type fixed point theorem on convex cones and some aplications, J. Math. Anal. Appl., 2004, 290(2), 452–468 http://dx.doi.org/10.1016/j.jmaa.2003.10.030 | Zbl 1066.47056
[13] Isac G., Németh S.Z., Fixed points and positive eigenvalues for nonlinear operators, J. Math. Anal. Appl., 2006, 314(2), 500–512 http://dx.doi.org/10.1016/j.jmaa.2005.04.006 | Zbl 1090.47041
[14] James I.M., Topological and Uniform Spaces, Undergrad. Texts Math., Springer, New York, 1987 http://dx.doi.org/10.1007/978-1-4612-4716-6
[15] Kim I.-S., Fixed points, eigenvalues and surjectivity, J. Korean Math. Soc., 2008, 45(1), 151–161 http://dx.doi.org/10.4134/JKMS.2008.45.1.151 | Zbl 1154.47045
[16] Latrach K., Taoudi M.A., Existence results for a generalized nonlinear Hammerstein equation on L 1 spaces, Nonlinear Anal., 2007, 66(10), 2325–2333 http://dx.doi.org/10.1016/j.na.2006.03.022 | Zbl 1128.45006
[17] Latrach K., Taoudi M.A., Zeghal A., Some fixed point theorems of the Schauder and the Krasnosel’skii type and application to nonlinear transport equations, J. Differential Equations, 2006, 221(1), 256–271 http://dx.doi.org/10.1016/j.jde.2005.04.010 | Zbl 1091.47046
[18] Nussbaum R.D., The fixed point index for local condensing maps, Ann. Mat. Pura Appl., 1971, 89, 217–258 http://dx.doi.org/10.1007/BF02414948 | Zbl 0226.47031
[19] Schaefer H.H., Topological Vector Spaces, Macmillan, New York, Collier-Macmillan, London, 1966 | Zbl 0141.30503
[20] Väth M., Fixed point theorems and fixed point index for countably condensing maps, Topol. Methods Nonlinear Anal., 1999, 13(2), 341–363 | Zbl 0964.47025
[21] Zeidler E., Nonlinear Functional Analysis and its Applications. I, Springer, New York, 1986 http://dx.doi.org/10.1007/978-1-4612-4838-5