On geometry of curves of flags of constant type
Boris Doubrov ; Igor Zelenko
Open Mathematics, Tome 10 (2012), p. 1836-1871 / Harvested from The Polish Digital Mathematics Library

We develop an algebraic version of Cartan’s method of equivalence or an analog of Tanaka prolongation for the (extrinsic) geometry of curves of flags of a vector space W with respect to the action of a subgroup G of GL(W). Under some natural assumptions on the subgroup G and on the flags, one can pass from the filtered objects to the corresponding graded objects and describe the construction of canonical bundles of moving frames for these curves in the language of pure linear algebra. The scope of applicability of the theory includes geometry of natural classes of curves of flags with respect to reductive linear groups or their parabolic subgroups. As simplest examples, this includes the projective and affine geometry of curves. The case of classical groups is considered in more detail.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269813
@article{bwmeta1.element.doi-10_2478_s11533-012-0078-7,
     author = {Boris Doubrov and Igor Zelenko},
     title = {On geometry of curves of flags of constant type},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {1836-1871},
     zbl = {1262.53013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0078-7}
}
Boris Doubrov; Igor Zelenko. On geometry of curves of flags of constant type. Open Mathematics, Tome 10 (2012) pp. 1836-1871. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0078-7/

[1] Agrachev A.A., Feedback-invariant optimal control theory and differential geometry II. Jacobi curves for singular extremals, J. Dynam. Control Systems, 1998, 4(4), 583–604 http://dx.doi.org/10.1023/A:1021871218615 | Zbl 0972.49014

[2] Agrachev A.A., Gamkrelidze R.V., Feedback-invariant optimal control theory and differential geometry I. Regular extremals, J. Dynam. Control Systems, 1997, 3(3), 343–389 http://dx.doi.org/10.1007/BF02463256 | Zbl 0952.49019

[3] Agrachev A., Zelenko I., Principle invariants of Jacobi curves, In: Nonlinear Control in the Year 2000, 1, Lecture Notes in Control and Inform. Sci., 258, Springer, 2000, 9–21 | Zbl 1239.53059

[4] Agrachev A., Zelenko I., Geometry of Jacobi curves. I, J. Dynam. Control Systems, 2002, 8(1), 93–140 http://dx.doi.org/10.1023/A:1013904801414

[5] Agrachev A., Zelenko I., Geometry of Jacobi curves. II, J. Dynam. Control Systems, 2002, 8(2), 167–215 http://dx.doi.org/10.1023/A:1015317426164

[6] Cartan E., La théorie des groupes finis et continus et la géométrie différentielle traitées par la méthode du repere mobile, Cahiers Scientifiques, 18, Gauthier-Villars, Paris, 1937 | Zbl 63.1227.02

[7] Derksen H., Weyman J., Quiver representations, Notices Amer. Math. Soc., 2005, 52(2), 200–206 | Zbl 1143.16300

[8] Doubrov B., Projective reparametrization of homogeneous curves, Arch. Math. (Brno), 2005, 41(1), 129–133 | Zbl 1122.53029

[9] Doubrov B., Generalized Wilczynski invariants for non-linear ordinary differential equations, In: Symmetries and Overdetermined Systems of Partial Differetial Equations, IMA Vol. Math. Appl., 144, Springer, New York, 2008, 25–40 http://dx.doi.org/10.1007/978-0-387-73831-4_2

[10] Doubrov B.M., Komrakov B.P., Classification of homogeneous submanifolds in homogeneous spaces, Lobachevskii J. Math., 1999, 3, 19–38 | Zbl 0964.53035

[11] Doubrov B., Machida Y., Morimoto T., Linear equations on filtered manifolds and submanifolds of flag varieties (manuscript)

[12] Doubrov B., Zelenko I., A canonical frame for nonholonomic rank two distributions of maximal class, C. R. Acad. Sci. Paris, 2006, 342(8), 589–594 http://dx.doi.org/10.1016/j.crma.2006.02.010 | Zbl 1097.58002

[13] Doubrov B., Zelenko I., On local geometry of non-holonomic rank 2 distributions, J. Lond. Math. Soc., 2009, 80(3), 545–566 http://dx.doi.org/10.1112/jlms/jdp044 | Zbl 1202.58002

[14] Doubrov B., Zelenko I., On local geometry of rank 3 distributions with 6-dimensional square, preprint available at http://arxiv.org/abs/0807.3267 | Zbl 1202.58002

[15] Doubrov B., Zelenko I., Geometry of curves in parabolic homogeneous spaces, preprint available at http://arxiv.org/abs/1110.0226 | Zbl 1278.53047

[16] Eastwood M., Slovák J., Preferred parameterisations on homogeneous curves, Comment. Math. Univ. Carolin., 2004, 45(4), 597–606

[17] Fels M., Olver P.J., Moving coframes: I. A practical algorithm, Acta Appl. Math., 1998, 51(2), 161–213 http://dx.doi.org/10.1023/A:1005878210297 | Zbl 0937.53012

[18] Fels M., Olver P.J., Moving coframes: II. Regularization and theoretical foundations, Acta Appl. Math., 1999, 55(2), 127–208 http://dx.doi.org/10.1023/A:1006195823000 | Zbl 0937.53013

[19] Fulton W., Harris J., Representation Theory, Grad. Texts in Math., 129, Springer, New York, 1991 | Zbl 0744.22001

[20] Gabriel P., Unzerlegbare Darstellungen I, Manuscripta Math., 1972, 6, 71–103 http://dx.doi.org/10.1007/BF01298413

[21] Gel’fand I.M., Lectrures on Linear Algebra, Interscience Tracts in Pure and Applied Mathematics, 9, Interscience, New York-London, 1961

[22] Green M.L., The moving frame, differential invariants and rigidity theorem for curves in homogeneous spaces, Duke Math. J., 1978, 45(4), 735–779 http://dx.doi.org/10.1215/S0012-7094-78-04535-0 | Zbl 0414.53039

[23] Griffiths P., On Cartan’s method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry, Duke Math. J., 1974 41, 775–814 http://dx.doi.org/10.1215/S0012-7094-74-04180-5 | Zbl 0294.53034

[24] Humphreys J.E., Introduction to Lie Algebras and Representation Theory, 3rd printing, Grad. Texts in Math., 9, Springer, New York-Berlin, 1980 | Zbl 0447.17002

[25] Jacobson N., Lie Algebras, Interscience Tracts in Pure and Applied Mathematics, 10, Interscience, New York-London, 1962 | Zbl 0121.27504

[26] Lie S., Theory der Transformationgruppen, 3, Teubner, Leipzig, 1893

[27] Marí Beffa G., Poisson brackets associated to the conformal geometry of curves, Trans. Amer. Math. Soc., 2005, 357(7), 2799–2827 http://dx.doi.org/10.1090/S0002-9947-04-03589-5 | Zbl 1081.37042

[28] Marí Beffa G., On completely integrable geometric evolutions of curves of Lagrangian planes, Proc. Roy. Soc. Edinburgh Sect. A, Math., 2007, 137(1), 111–131 | Zbl 1130.37032

[29] Marí Beffa G., Projective-type differential invariants and geometric curve evolutions of KdV-type in flat homogeneous manifolds, Ann. Inst. Fourier (Grenoble), 2008, 58(4), 1295–1335 http://dx.doi.org/10.5802/aif.2385 | Zbl 1192.37099

[30] Marí Beffa G., Moving frames, geometric Poisson brackets and the KdV-Schwarzian evolution of pure spinors, Ann. Inst. Fourier (Grenoble) (in press) | Zbl 1245.53066

[31] Ovsienko V., Lagrange Schwarzian derivative and symplectic Sturm theory, Ann. Fac. Sci. Toulouse Math., 1993, 2(1), 73–96 http://dx.doi.org/10.5802/afst.758 | Zbl 0780.34004

[32] Se-ashi Y., On differential invariants of integrable finite type linear differential equations, Hokkaido Math. J., 1988, 17(2), 151–195

[33] Se-ashi Y., A geometric construction of Laguerre-Forsyth’s canonical forms of linear ordinary differential equations, In: Progress in Differential Geometry, Adv. Stud. Pure Math., 22, Kinokuniya, Tokyo, 1993, 265–297 | Zbl 0842.34015

[34] Tanaka N., On differential systems, graded Lie algebras and pseudogroups, J. Math. Kyoto. Univ., 1970, 10, 1–82

[35] Tanaka N., On the equivalence problems associated with simple graded Lie algebras, Hokkaido Math. J., 1979, 6(1), 23–84 | Zbl 0409.17013

[36] Vinberg È.B., The Weyl group of a graded Lie algebra, Izv. Akad. Nauk SSSR Ser. Mat., 1976, 40(3), 488–526 (in Russian) | Zbl 0363.20035

[37] Vinberg È.B., Classification of homogeneous nilpotent elements of a semisimple graded Lie algebra, Trudy Sem. Vektor. Tenzor. Anal., 1979, 19, 155–177 (in Russian) | Zbl 0431.17006

[38] Wilczynski E.J., Projective Differential Geometry of Curves and Ruled Surfaces, Teubner, Leipzig, 1906 | Zbl 37.0620.02

[39] Zelenko I., Complete systems of invariants for rank 1 curves in Lagrange Grassmannians, In: Differential Geometry and its Applications, Prague, August 30–September 3, 2004, Matfyzpress, Prague, 2005, 367–382 | Zbl 1110.53062

[40] Zelenko I., Li C., Parametrized curves in Lagrange Grassmannians, C. R. Math. Acad. Sci. Paris, 2007, 345(11), 647–652 http://dx.doi.org/10.1016/j.crma.2007.10.034 | Zbl 1130.53042

[41] Zelenko I., Li C., Differential geometry of curves in Lagrange Grassmannians with given Young diagram, Differential Geom. Appl., 2009, 27(6), 723–742 http://dx.doi.org/10.1016/j.difgeo.2009.07.002 | Zbl 1177.53020

[42] Sophus Lie’s 1880 Transformation Group Paper, Lie Groups: Hist., Frontiers and Appl., 1, Math Sci Press, Brookline, 1975