The paper concerns topologies introduced in a topological space (X, τ) by operators which are much weaker than the lower density operators. Some properties of the family of sets having the Baire property and the family of meager sets with respect to such topologies are investigated.
@article{bwmeta1.element.doi-10_2478_s11533-012-0077-8, author = {Katarzyna Flak and Jacek Hejduk}, title = {On topologies generated by some operators}, journal = {Open Mathematics}, volume = {11}, year = {2013}, pages = {349-356}, zbl = {1260.28003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0077-8} }
Katarzyna Flak; Jacek Hejduk. On topologies generated by some operators. Open Mathematics, Tome 11 (2013) pp. 349-356. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0077-8/
[1] Ciesielski K., Larson L., Ostaszewski K., I-Density Continuous Functions, Memoirs of Amer. Math. Soc., 1994, 107, #515 | Zbl 0801.26001
[2] Filipczak M., Filipczak T., On f-density topology, Topology Appl., 2008, 155(17–18), 1980–1989 http://dx.doi.org/10.1016/j.topol.2007.04.024 | Zbl 0468.26002
[3] Filipczak M., Hejduk J., On topologies associated with the Lebesgue measure, Tatra Mt. Math. Publ., 2004, 28(2), 187–189 | Zbl 1107.54003
[4] Hejduk J., Density Topologies with Respect to Invariant ρ-Ideals, University Press, Łódz, 1997
[5] Hejduk J., On the density topologies generated by functions, Tatra Mt. Math. Publ., 2008, 40, 133–141 | Zbl 1199.54018
[6] Hejduk J., Horbaczewska G., On I-density topologies with respect to a fixed sequence, In: Real Analysis Conference, Rowy, 2003, Wyzsza Szkoła Informatyki, Łódź, 2004, 78–85
[7] Hejduk J., Wiertelak R., On the density topologies with respect to the sequences of intervals tending to zero, preprint available at http://www.math.uni.lodz.pl/preprints,all.html | Zbl 1329.26007
[8] Lukeš J., Malý J., Zajíček L., Fine Topology Methods in Real Analysis and Potential Theory, Lecture Notes in Math., 1189, Springer, Berlin, 1986 | Zbl 0607.31001
[9] Oxtoby J.C., Measure and Category, 2nd ed., Grad. Texts in Math., 2, Springer, New York-Berlin, 1980 http://dx.doi.org/10.1007/978-1-4684-9339-9
[10] Poreda W., Wilczynski W., Topology similar to the density topology, Bull. Soc. Sci. Lett. Łódz Sér. Rech. Déform., 2001, 34, 55–60 | Zbl 1088.54500
[11] Terepeta M., Wagner-Bojakowska E., ψ-density topology, Rend. Circ. Mat. Palermo, 1999, 48(3), 451–476 http://dx.doi.org/10.1007/BF02844336 | Zbl 0963.26003
[12] Wiertelak R., A generalization of the density topology with respect to category, Real Anal. Exchange, 2006/07, 32(1), 273–286 | Zbl 1243.54008
[13] Wilczyński W., A generalization of density topology, Real Anal. Exchange, 1982/83, 8(1), 16–20
[14] Wilczyński W., Density topologies, In: Handbook of Measure Theory, North-Holland, Amsterdam, 2002, 675–702 http://dx.doi.org/10.1016/B978-044450263-6/50016-6 | Zbl 1021.28002
[15] Wilczyński W., Aversa V., Simple density topology, Rend. Circ. Mat. Palermo, 2004, 53(3), 344–352 http://dx.doi.org/10.1007/BF02875727 | Zbl 1194.26002