Decomposability criterion for linear sheaves
Marcos Jardim ; Vitor Silva
Open Mathematics, Tome 10 (2012), p. 1292-1299 / Harvested from The Polish Digital Mathematics Library

We establish a decomposability criterion for linear sheaves on ℙn. Applying it to instanton bundles, we show, in particular, that every rank 2n instanton bundle of charge 1 on ℙn is decomposable. Moreover, we provide an example of an indecomposable instanton bundle of rank 2n − 1 and charge 1, thus showing that our criterion is sharp.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269156
@article{bwmeta1.element.doi-10_2478_s11533-012-0074-y,
     author = {Marcos Jardim and Vitor Silva},
     title = {Decomposability criterion for linear sheaves},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {1292-1299},
     zbl = {1278.14015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0074-y}
}
Marcos Jardim; Vitor Silva. Decomposability criterion for linear sheaves. Open Mathematics, Tome 10 (2012) pp. 1292-1299. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0074-y/

[1] Fløystad G., Monads on projective spaces, Comm. Algebra, 2000, 28(12), 5503–5516 http://dx.doi.org/10.1080/00927870008827171 | Zbl 0977.14007

[2] Horrocks G., Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc., 1964, 14, 689–713 http://dx.doi.org/10.1112/plms/s3-14.4.689 | Zbl 0126.16801

[3] Jardim M., Instanton sheaves on complex projective spaces, Collect. Math., 2006, 57(1), 69–91 | Zbl 1095.14040

[4] Jardim M., Miró-Roig R.M., On the semistability of instanton sheaves over certain projective varieties, Comm. Algebra, 2008, 36(1), 288–298 http://dx.doi.org/10.1080/00927870701665503 | Zbl 1131.14046

[5] Kac V.G., Infinite root systems, representations of graphs and invariant theory, Invent. Math., 1980, 56(1), 57–92 http://dx.doi.org/10.1007/BF01403155 | Zbl 0427.17001

[6] Okonek Chr., Schneider M., Spindler H., Vector Bundles on Complex Projective Spaces, Progr. Math., 3, Birkhäuser, Boston, 1980 http://dx.doi.org/10.1007/978-3-0348-0151-5 | Zbl 0438.32016