We establish a decomposability criterion for linear sheaves on ℙn. Applying it to instanton bundles, we show, in particular, that every rank 2n instanton bundle of charge 1 on ℙn is decomposable. Moreover, we provide an example of an indecomposable instanton bundle of rank 2n − 1 and charge 1, thus showing that our criterion is sharp.
@article{bwmeta1.element.doi-10_2478_s11533-012-0074-y, author = {Marcos Jardim and Vitor Silva}, title = {Decomposability criterion for linear sheaves}, journal = {Open Mathematics}, volume = {10}, year = {2012}, pages = {1292-1299}, zbl = {1278.14015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0074-y} }
Marcos Jardim; Vitor Silva. Decomposability criterion for linear sheaves. Open Mathematics, Tome 10 (2012) pp. 1292-1299. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0074-y/
[1] Fløystad G., Monads on projective spaces, Comm. Algebra, 2000, 28(12), 5503–5516 http://dx.doi.org/10.1080/00927870008827171 | Zbl 0977.14007
[2] Horrocks G., Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc., 1964, 14, 689–713 http://dx.doi.org/10.1112/plms/s3-14.4.689 | Zbl 0126.16801
[3] Jardim M., Instanton sheaves on complex projective spaces, Collect. Math., 2006, 57(1), 69–91 | Zbl 1095.14040
[4] Jardim M., Miró-Roig R.M., On the semistability of instanton sheaves over certain projective varieties, Comm. Algebra, 2008, 36(1), 288–298 http://dx.doi.org/10.1080/00927870701665503 | Zbl 1131.14046
[5] Kac V.G., Infinite root systems, representations of graphs and invariant theory, Invent. Math., 1980, 56(1), 57–92 http://dx.doi.org/10.1007/BF01403155 | Zbl 0427.17001
[6] Okonek Chr., Schneider M., Spindler H., Vector Bundles on Complex Projective Spaces, Progr. Math., 3, Birkhäuser, Boston, 1980 http://dx.doi.org/10.1007/978-3-0348-0151-5 | Zbl 0438.32016