The Brauer group of desingularization of moduli spaces of vector bundles over a curve
Indranil Biswas ; Amit Hogadi ; Yogish Holla
Open Mathematics, Tome 10 (2012), p. 1300-1305 / Harvested from The Polish Digital Mathematics Library

Let C be an irreducible smooth projective curve, of genus at least two, defined over an algebraically closed field of characteristic zero. For a fixed line bundle L on C, let M C (r; L) be the coarse moduli space of semistable vector bundles E over C of rank r with ∧r E = L. We show that the Brauer group of any desingularization of M C(r; L) is trivial.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269529
@article{bwmeta1.element.doi-10_2478_s11533-012-0071-1,
     author = {Indranil Biswas and Amit Hogadi and Yogish Holla},
     title = {The Brauer group of desingularization of moduli spaces of vector bundles over a curve},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {1300-1305},
     zbl = {1281.14028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0071-1}
}
Indranil Biswas; Amit Hogadi; Yogish Holla. The Brauer group of desingularization of moduli spaces of vector bundles over a curve. Open Mathematics, Tome 10 (2012) pp. 1300-1305. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0071-1/

[1] Abramovich D., Corti A., Vistoli A., Twisted bundles and admissible covers, Comm. Algebra, 2003, 31(8), 3547–3618 http://dx.doi.org/10.1081/AGB-120022434 | Zbl 1077.14034

[2] Balaji V., Cohomology of certain moduli spaces of vector bundles, Proc. Indian Acad. Sci. Math. Sci., 1988, 98(1), 1–24 http://dx.doi.org/10.1007/BF02880966 | Zbl 0687.14014

[3] Balaji V., Biswas I., Gabber O., Nagaraj D.S., Brauer obstruction for a universal vector bundle, C. R. Math. Acad. Sci. Paris, 2007, 345(5), 265–268 http://dx.doi.org/10.1016/j.crma.2007.07.011 | Zbl 1127.14018

[4] Gille P., Szamuely T., Central Simple Algebras and Galois Cohomology, Cambridge Stud. Adv. Math., 101, Cambridge University Press, Cambridge, 2006 http://dx.doi.org/10.1017/CBO9780511607219 | Zbl 1137.12001

[5] Jarod A., Good Moduli Spaces for Artin Stacks, PhD thesis, Stanford University, 2008 | Zbl 1314.14095

[6] King A., Schofield A., Rationality of moduli of vector bundles on curves, Indag. Math. (N.S.), 1999, 10(4), 519–535 http://dx.doi.org/10.1016/S0019-3577(00)87905-7 | Zbl 1043.14502

[7] Laumon G., Moret-Bailly L., Champs Algébriques, Ergeb. Math. Grenzgeb., 39, Springer, Berlin, 2000

[8] Narasimhan M.S., Ramanan S., Moduli of vector bundles on a compact Riemann surface, Ann. of Math., 1969, 89(1), 14–51 http://dx.doi.org/10.2307/1970807 | Zbl 0186.54902

[9] Nitsure N., Cohomology of desingularization of moduli space of vector bundles, Compositio Math., 1989, 69(3), 309–339 | Zbl 0702.14007