The gap phenomenon in the dimension study of finite type systems
Boris Kruglikov
Open Mathematics, Tome 10 (2012), p. 1605-1618 / Harvested from The Polish Digital Mathematics Library

Several examples of gaps (lacunes) between dimensions of maximal and submaximal symmetric models are considered, which include investigation of number of independent linear and quadratic integrals of metrics and counting the symmetries of geometric structures and differential equations. A general result clarifying this effect in the case when the structure is associated to a vector distribution, is proposed.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269297
@article{bwmeta1.element.doi-10_2478_s11533-012-0070-2,
     author = {Boris Kruglikov},
     title = {The gap phenomenon in the dimension study of finite type systems},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {1605-1618},
     zbl = {06137087},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0070-2}
}
Boris Kruglikov. The gap phenomenon in the dimension study of finite type systems. Open Mathematics, Tome 10 (2012) pp. 1605-1618. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0070-2/

[1] Anderson I., Kruglikov B., Rank 2 distributions of Monge equations: symmetries, equivalences, extensions, Adv. Math., 2011, 228(3), 1435–1465 http://dx.doi.org/10.1016/j.aim.2011.06.019 | Zbl 1234.34010

[2] Bialy M., Mironov A.E., Rich quasi-linear system for integrable geodesic flows on 2-torus, Discrete Contin. Dyn. Syst., 2011, 29(1), 81–90 http://dx.doi.org/10.3934/dcds.2011.29.81 | Zbl 1232.37035

[3] Cartan E., Les systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du second ordre, Ann. Sci. École Norm. Sup., 1910, 27, 109–192 | Zbl 41.0417.01

[4] Darboux G., Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, 2, 4, Gauthier-Villar, Paris, 1887, 1896

[5] Doubrov B., Zelenko I., On local geometry of non-holonomic rank 2 distributions, J. London Math. Soc., 2009, 80(3), 545–566 http://dx.doi.org/10.1112/jlms/jdp044 | Zbl 1202.58002

[6] Dunajski M., West S., Anti-self-dual conformal structures in neutral signature, In: Recent Developments in Pseudo-Riemannian Geometry, ESI Lect. Math. Phys., European Mathematical Society, Zürich, 2008, 113–148 | Zbl 1158.53014

[7] Egorov I.P., Riemannian spaces of the first three lacunary types in the geometric sense, Dokl. Akad. Nauk SSSR, 1963, 150, 730–732

[8] Egorov I.P., Motions in Spaces of Affine Connection, 2nd ed., Librokom, Moscow, 2009 (in Russian)

[9] Eisenhart L.P., Riemannian Geometry, Princeton University Press, Princeton, 1949

[10] Goursat E., Leçons sur l’Intégration des Équations aux Dérivées Partielles du Second Ordere à Deux Variables Indépendantes, 2, Hermann, Paris, 1898 | Zbl 27.0264.04

[11] Kiosak V.A., Matveev V.S., Mikeš J., Shandra I.G., On the degree of geodesic mobility of Riemannian metrics, Math. Notes, 2010, 87(3–4), 586–587 http://dx.doi.org/10.1134/S0001434610030375 | Zbl 1200.53044

[12] Kiyohara K., Compact Liouville surfaces, J. Math. Soc. Japan, 1991, 43(3), 555–591 http://dx.doi.org/10.2969/jmsj/04330555 | Zbl 0751.53015

[13] Kobayashi S., Transformation Groups in Differential Geometry, Classics Math., Springer, Berlin, 1995 | Zbl 0829.53023

[14] Kolokol’tsov V., Polynomial Integrals of Geodesic Flows on Compact Surfaces, PhD thesis, Moscow State University, Moscow, 1984 (in Russian)

[15] Kruglikov B., Invariant characterization of Liouville metrics and polynomial integrals, J. Geom. Phys., 2008, 58(8), 979–995 http://dx.doi.org/10.1016/j.geomphys.2008.03.005 | Zbl 1145.53067

[16] Kruglikov B., Point classification of second order ODEs: Tresse classification revisited and beyond, In: Differential Equations: Geometry, Symmetries and Integrability, Tromsø, June 17–22, 2008, Abel Symp., 5, Springer, Berlin, 2009, 199–221 http://dx.doi.org/10.1007/978-3-642-00873-3_10

[17] Kruglikov B., Finite-dimensionality in Tanaka theory, Ann. Inst. H.Poincaré Anal. Non Linéaire, 2011, 28(1), 75–90 http://dx.doi.org/10.1016/j.anihpc.2010.10.001 | Zbl 1260.58001

[18] Kruglikov B., Symmetries of almost complex structures and pseudoholomorphic foliations, preprint available at http://arxiv.org/abs/1103.4404 | Zbl 1304.32016

[19] Kruglikov B., Lychagin V., Geometry of differential equations, In: Handbook on Global Analysis, 1214, Elsevier, Amsterdam, 2008, 725–771 http://dx.doi.org/10.1016/B978-044452833-9.50015-2 | Zbl 1236.58039

[20] Matveev V.S., Shevchishin V., Two-dimensional superintegrable metrics with one linear and one cubic integral, J. Geom. Phys., 2011, 61(8), 1353–1377 http://dx.doi.org/10.1016/j.geomphys.2011.02.012 | Zbl 1218.53087

[21] Matveev V.S., Topalov P.Ĭ., Trajectory equivalence and corresponding integrals, Regul. Chaotic Dyn., 1998, 3(2), 30–45 http://dx.doi.org/10.1070/rd1998v003n02ABEH000069 | Zbl 0928.37003

[22] Patrangenaru V., Lorentz manifolds with the three largest degrees of symmetry, Geom. Dedicata, 2003, 102, 25–33 http://dx.doi.org/10.1023/B:GEOM.0000006588.95481.1c | Zbl 1051.53058

[23] Tanaka N., On differential systems, graded Lie algebras and pseudogroups, J. Math. Kyoto Univ., 1970, 10, 1–82

[24] Tresse A., Détermination des Invariants Ponctuels de l’Équation Différentielle Ordinaire de Second Ordre y″ = ω(x, y, y′), Preisschriften der fürstlichen Jablonowski’schen Gesellschaft, 32, Hirzel, Leipzig, 1896 | Zbl 27.0254.01

[25] Yano K., Kon M., Structures on Manifolds, Ser. Pure Math., 3, World Scientific, Singapore, 1984

[26] Zimmer R., On the automorphism group of a compact Lorentz manifold and other geometric manifolds, Invent. Math., 1986, 83(3), 411–424 http://dx.doi.org/10.1007/BF01394415 | Zbl 0591.53026