On principal iteration semigroups in the case of multiplier zero
Dorota Krassowska ; Marek Zdun
Open Mathematics, Tome 11 (2013), p. 177-187 / Harvested from The Polish Digital Mathematics Library

We collect and generalize various known definitions of principal iteration semigroups in the case of multiplier zero and establish connections among them. The common characteristic property of each definition is conjugating of an iteration semigroup to different normal forms. The conjugating functions are expressed by suitable formulas and satisfy either Böttcher’s or Schröder’s functional equation.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269039
@article{bwmeta1.element.doi-10_2478_s11533-012-0068-9,
     author = {Dorota Krassowska and Marek Zdun},
     title = {On principal iteration semigroups in the case of multiplier zero},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {177-187},
     zbl = {1266.39021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0068-9}
}
Dorota Krassowska; Marek Zdun. On principal iteration semigroups in the case of multiplier zero. Open Mathematics, Tome 11 (2013) pp. 177-187. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0068-9/

[1] Blanton G., Baker J.A., Iteration groups generated by C n functions, Arch. Math. (Brno), 1982, 18(3), 121–127 | Zbl 0518.26002

[2] Ger J., Smajdor A., Regular iteration in the case of multiplier zero, Aequationes Math., 1972, 7, 127–131 http://dx.doi.org/10.1007/BF01818507 | Zbl 0243.39006

[3] Kuczma M., Functional Equations in a Single Variable, Monogr. Mat., 46, PWN, Warszawa, 1968

[4] Kuczma M., Choczewski B., Ger R., Iterative Functional Equations, Encyclopedia Math. Appl., 32, Cambridge University Press, Cambridge, 1990 http://dx.doi.org/10.1017/CBO9781139086639 | Zbl 0703.39005

[5] Szekeres G., Regular iteration of real and complex functions, Acta Math., 1958, 100, 203–258 http://dx.doi.org/10.1007/BF02559539 | Zbl 0145.07903

[6] Targonski Gy., Topics in Iteration Theory, Studia Math.: Skript, 6, Vandenhoeck & Ruprecht, Göttingen, 1981

[7] Weitkämper J., Embeddings in iteration group and semigroups with nontrivial units, Stochastica, 1983, 7(3), 175–195 | Zbl 0567.39001

[8] Zdun M.C., On the regular solutions of a linear functional equation, Ann. Polon. Math., 1974, 30, 89–96

[9] Zdun M.C., Some remarks on iteration semigroups, Uniw. Slaski w Katowicach Prace Naukowe-Prace Mat., 7, 1977, 65–69

[10] Zdun M.C., Continuous and Differentiable Iteration Semigroups, Prace Nauk. Uniw. Slask. Katowic., 308, Uniwersytet Slaski, Katowice, 1979

[11] Zdun M.C., On differentiable iteration groups, Publ. Math. Debrecen, 1979, 26(1–2), 105–114 | Zbl 0434.39004

[12] Zdun M.C., On the structure of iteration group of homeomorphisms having fixed points, Aequationes Math., 1998, 55(3), 199–216 http://dx.doi.org/10.1007/s000100050030 | Zbl 0908.39007

[13] Zdun M.C., Zhang W., Koenigs embedding flow problem with global C 1 smoothness, J. Math. Anal. Appl., 2011, 374(2), 633–643 http://dx.doi.org/10.1016/j.jmaa.2010.08.075 | Zbl 1213.37030